File size: 1,248 Bytes
d03e9fe 2f1c398 d03e9fe 2f1c398 909818c 2f1c398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
license: mit
datasets:
- imagenet-1k
language:
- en
- zh
---
# Model Card for VAR (Visual AutoRegressive) Transformers 🔥
<!-- Provide a quick summary of what the model is/does. -->
[![arXiv](https://img.shields.io/badge/arXiv%20papr-2404.02905-b31b1b.svg)](https://arxiv.org/abs/2404.02905)[![demo platform](https://img.shields.io/badge/Play%20with%20VAR%21-VAR%20demo%20platform-lightblue)](https://var.vision/demo)
VAR is a new visual generation framework that makes GPT-style models surpass diffusion models **for the first time**🚀, and exhibits clear power-law Scaling Laws📈 like large language models (LLMs).
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/60e73ffd06ad9ae5bbcfc52c/FusWBHW8uJgYWO02HFNGz.png" width=93%>
<p>
VAR redefines the autoregressive learning on images as coarse-to-fine "next-scale prediction" or "next-resolution prediction", diverging from the standard raster-scan "next-token prediction".
<p align="center">
<img src="https://github.com/FoundationVision/VAR/assets/39692511/3e12655c-37dc-4528-b923-ec6c4cfef178" width=93%>
<p>
This repo is used for hosting VAR's checkpoints.
For more details or tutorials see https://github.com/FoundationVision/VAR.
|