--- language: - en license: apache-2.0 base_model: openai/whisper-base tags: - en-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_3_0 metrics: - wer model-index: - name: Whisper base en - spongebob results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 3.0 type: mozilla-foundation/common_voice_3_0 args: 'config: en, split: test' metrics: - name: Wer type: wer value: 18.36301062397127 --- # Whisper base en - spongebob This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 3.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3451 - Wer: 18.3630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2586 | 0.84 | 500 | 0.3588 | 19.4733 | | 0.1667 | 1.68 | 1000 | 0.3451 | 17.4892 | | 0.1069 | 2.53 | 1500 | 0.3451 | 18.3630 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0