File size: 3,312 Bytes
aa69275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# visual-chatgpt-zh-vits
visual-chatgpt支持中文的windows版本
融合vits推断模块
官方论文: [<font size=5>Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models</font>](https://arxiv.org/abs/2303.04671)
官方仓库:[visual-chatgpt](https://github.com/microsoft/visual-chatgpt)
fork from:[visual-chatgpt-zh](https://github.com/wxj630/visual-chatgpt-zh)
## Demo
<img src="./assets/demo_short.gif" width="750">
## System Architecture
<p align="center"><img src="./assets/figure.jpg" alt="Logo"></p>
## Quick Start
```
# 1、下载代码
git clone https://github.com/FrankZxShen/visual-chatgpt-zh-vits.git
# 2、进入项目目录
cd visual-chatgpt-zh-vits
# 3、创建python环境并激活环境
conda create -n visgpt python=3.8
activate visgpt
# 4、安装环境依赖
pip install -r requirement.txt
# 5、确认api key
export OPENAI_API_KEY={Your_Private_Openai_Key}
# windows系统用set命令而不是export
set OPENAI_API_KEY={Your_Private_Openai_Key}
# 6、下载hf模型到指定目录
# 具体模型文件地址于hf_models
# 若需要vits推断功能将G.pth config.json放于vits_models下(目前仅支持日语?)
# Windows:下载pyopenjtalk Windows于text下
# 7、启动系统,这个例子我们加载了ImageCaptioning和Text2Image两个模型,
python visual_chatgpt_zh_vits.py
# 想要用哪个功能就可增加一些模型加载
python visual_chatgpt_zh_vits.py
--load ImageCaptioning_cuda:0,Text2Image_cuda:0 \
--pretrained_model_dir {your_hf_models_path} \
# 8、可以直接在visual_chatgpt_zh_vits.py 38行修改key 若需要vits 39行设定True
```
原作者:根据官方建议,不同显卡可以指定不同“--load”参数,显存不够的就可以时间换空间,把不重要的模型加载到cpu上,虽然推理慢但是好歹能跑不是?(手动狗头):
```
# Advice for CPU Users
python visual_chatgpt.py --load ImageCaptioning_cpu,Text2Image_cpu
# Advice for 1 Tesla T4 15GB (Google Colab)
python visual_chatgpt.py --load "ImageCaptioning_cuda:0,Text2Image_cuda:0"
# Advice for 4 Tesla V100 32GB
python visual_chatgpt.py --load "ImageCaptioning_cuda:0,ImageEditing_cuda:0,
Text2Image_cuda:1,Image2Canny_cpu,CannyText2Image_cuda:1,
Image2Depth_cpu,DepthText2Image_cuda:1,VisualQuestionAnswering_cuda:2,
InstructPix2Pix_cuda:2,Image2Scribble_cpu,ScribbleText2Image_cuda:2,
Image2Seg_cpu,SegText2Image_cuda:2,Image2Pose_cpu,PoseText2Image_cuda:2,
Image2Hed_cpu,HedText2Image_cuda:3,Image2Normal_cpu,
NormalText2Image_cuda:3,Image2Line_cpu,LineText2Image_cuda:3"
```
实测环境 Windows RTX3070 8G:若只需要ImageCaptioning和Text2Image两个模型的功能,对显存要求极低,理论上能跑AI绘图均可以(>4G,但速度很慢)?
## limitations
img无法显示在gradio上?
## Acknowledgement
We appreciate the open source of the following projects:
- HuggingFace [[Project]](https://github.com/huggingface/transformers)
- ControlNet [[Paper]](https://arxiv.org/abs/2302.05543) [[Project]](https://github.com/lllyasviel/ControlNet)
- Stable Diffusion [[Paper]](https://arxiv.org/abs/2112.10752) [[Project]](https://github.com/CompVis/stable-diffusion)
|