visual-chatgpt-zh-vits / vits_infer.py
FrankZxShen's picture
Upload 55 files
aa69275
raw
history blame
6.55 kB
import torch
import gradio as gr
import json
import openai
from scipy.io.wavfile import write
from mel_processing import spectrogram_torch
from text import text_to_sequence, _clean_text
from models import SynthesizerTrn
import utils_vits
import commons
import sys
import re
from torch import no_grad, LongTensor
import logging
from winsound import PlaySound
from pygtrans import Translate, Null
import time
############################################################################
def get_text(text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def ex_print(text, escape=False):
if escape:
print(text.encode('unicode_escape').decode())
else:
print(text)
def print_speakers(speakers, escape=False):
if len(speakers) > 100:
return
print('ID\tSpeaker')
for id, name in enumerate(speakers):
ex_print(str(id) + '\t' + name, escape)
def get_speaker_id(message):
speaker_id = input(message)
try:
speaker_id = int(speaker_id)
except:
print(str(speaker_id) + ' is not a valid ID!')
sys.exit(1)
return speaker_id
def get_label_value(text, label, default, warning_name='value'):
value = re.search(rf'\[{label}=(.+?)\]', text)
if value:
try:
text = re.sub(rf'\[{label}=(.+?)\]', '', text, 1)
value = float(value.group(1))
except:
print(f'Invalid {warning_name}!')
sys.exit(1)
else:
value = default
return value, text
def get_label(text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
def generateSound(inputString):
idmessage = """ID Speaker
0 maho
"""
speakerID = 0
model = r".\vits_models\G.pth"
config = r".\vits_models\config.json"
if "image" and "png" in inputString:
return False
hps_ms = utils_vits.get_hparams_from_file(config)
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
net_g_ms = SynthesizerTrn(
n_symbols,
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=n_speakers,
emotion_embedding=emotion_embedding,
**hps_ms.model)
_ = net_g_ms.eval()
utils_vits.load_checkpoint(model, net_g_ms)
def voice_conversion():
audio_path = input('Path of an audio file to convert:\n')
print_speakers(speakers)
audio = utils_vits.load_audio_to_torch(
audio_path, hps_ms.data.sampling_rate)
originnal_id = get_speaker_id('Original speaker ID: ')
target_id = get_speaker_id('Target speaker ID: ')
out_path = input('Path to save: ')
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, hps_ms.data.filter_length,
hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([originnal_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[
0][0, 0].data.cpu().float().numpy()
return audio, out_path
if n_symbols != 0:
if not emotion_embedding:
#while True:
if(1==1):
#choice = input('TTS or VC? (t/v):')
choice = 't'
if choice == 't':
#text = input('Text to read: ')
text = inputString
client = Translate()
while True:
text_t = client.translate(text, target='ja')
if isinstance(text, Null):
print("Translation failure!")
time.sleep(2)
else:
print("Translation Success!")
text = text_t.translatedText
break
if text == '[ADVANCED]':
#text = input('Raw text:')
text = "I can't speak!"
#print('Cleaned text is:')
#ex_print(_clean_text(
# text, hps_ms.data.text_cleaners), escape)
#continue
length_scale, text = get_label_value(
text, 'LENGTH', 1.1, 'length scale')
noise_scale, text = get_label_value(
text, 'NOISE', 0.2, 'noise scale')
noise_scale_w, text = get_label_value(
text, 'NOISEW', 0.8, 'deviation of noise')
cleaned, text = get_label(text, 'CLEANED')
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
#print_speakers(speakers, escape)
#speaker_id = get_speaker_id('Speaker ID: ')
speaker_id = speakerID
#out_path = input('Path to save: ')
out_path = "output.wav"
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
elif choice == 'v':
audio, out_path = voice_conversion()
write(out_path, hps_ms.data.sampling_rate, audio)
print('Successfully saved!')
return True