File size: 9,627 Bytes
e1c1753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from dreamcoder.utilities import *
from dreamcoder.program import *
from dreamcoder.task import Task
class FrontierEntry(object):
def __init__(
self,
program,
_=None,
logPrior=None,
logLikelihood=None,
logPosterior=None):
self.logPosterior = logPrior + logLikelihood if logPosterior is None else logPosterior
self.program = program
self.logPrior = logPrior
self.logLikelihood = logLikelihood
def __repr__(self):
return "FrontierEntry(program={self.program}, logPrior={self.logPrior}, logLikelihood={self.logLikelihood}".format(
self=self)
def strip_primitive_values(self):
return FrontierEntry(program=strip_primitive_values(self.program),
logPrior=self.logPrior,
logPosterior=self.logPosterior,
logLikelihood=self.logLikelihood)
def unstrip_primitive_values(self):
return FrontierEntry(program=unstrip_primitive_values(self.program),
logPrior=self.logPrior,
logPosterior=self.logPosterior,
logLikelihood=self.logLikelihood)
class Frontier(object):
def __init__(self, frontier, task):
self.entries = frontier
self.task = task
def __repr__(
self): return "Frontier(entries={self.entries}, task={self.task})".format(self=self)
def __iter__(self): return iter(self.entries)
def __len__(self): return len(self.entries)
def json(self):
return {"request": self.task.request.json(),
"task": str(self.task),
"programs": [{"program": str(e.program),
"logLikelihood": e.logLikelihood}
for e in self ]}
def strip_primitive_values(self):
return Frontier([e.strip_primitive_values() for e in self.entries ],
self.task)
def unstrip_primitive_values(self):
return Frontier([e.unstrip_primitive_values() for e in self.entries ],
self.task)
DUMMYFRONTIERCOUNTER = 0
@staticmethod
def dummy(program, logLikelihood=0., logPrior=0., tp=None):
"""Creates a dummy frontier containing just this program"""
if not tp:
tp = program.infer().negateVariables()
t = Task(
"<dummy %d: %s>" %
(Frontier.DUMMYFRONTIERCOUNTER,
str(program)),
tp,
[])
f = Frontier([FrontierEntry(program=program,
logLikelihood=logLikelihood,
logPrior=logPrior)],
task=t)
Frontier.DUMMYFRONTIERCOUNTER += 1
return f
def marginalLikelihood(self):
return lse([e.logPrior + e.logLikelihood for e in self])
def temperature(self,T):
"""Divides prior by T"""
return Frontier([ FrontierEntry(program=e.program,
logPrior=e.logPrior/T,
logLikelihood=e.logLikelihood)
for e in self],
task=self.task)
def normalize(self):
z = self.marginalLikelihood()
newEntries = [
FrontierEntry(
program=e.program,
logPrior=e.logPrior,
logLikelihood=e.logLikelihood,
logPosterior=e.logPrior +
e.logLikelihood -
z) for e in self]
newEntries.sort(key=lambda e: e.logPosterior, reverse=True)
return Frontier(newEntries,
self.task)
def expectedProductionUses(self, g):
"""Returns a vector of the expected number of times each production was used"""
import numpy as np
this = g.rescoreFrontier(self).normalize()
ps = list(sorted(g.primitives, key=str))
features = np.zeros(len(ps))
for j, p in enumerate(ps):
for e in this:
w = math.exp(e.logPosterior)
features[j] += w * sum(child == p
for _, child in e.program.walk() )
if not p.isInvented: features[j] *= 0.3
return features
def removeZeroLikelihood(self):
self.entries = [
e for e in self.entries if e.logLikelihood != float('-inf')]
return self
def topK(self, k):
if k == 0: return Frontier([], self.task)
if k < 0: return self
newEntries = sorted(self.entries,
key=lambda e: (-e.logPosterior, str(e.program)))
return Frontier(newEntries[:k], self.task)
def sample(self):
"""Samples an entry from a frontier"""
return sampleLogDistribution([(e.logLikelihood + e.logPrior, e)
for e in self])
@property
def bestPosterior(self):
return min(self.entries,
key=lambda e: (-e.logPosterior, str(e.program)))
def replaceWithSupervised(self, g):
assert self.task.supervision is not None
return g.rescoreFrontier(Frontier([FrontierEntry(self.task.supervision,
logLikelihood=0., logPrior=0.)],
task=self.task))
@property
def bestll(self):
best = max(self.entries,
key=lambda e: e.logLikelihood)
return best.logLikelihood
@property
def empty(self): return self.entries == []
@staticmethod
def makeEmpty(task):
return Frontier([], task=task)
def summarize(self):
if self.empty:
return "MISS " + self.task.name
best = self.bestPosterior
return "HIT %s w/ %s ; log prior = %f ; log likelihood = %f" % (
self.task.name, best.program, best.logPrior, best.logLikelihood)
def summarizeFull(self):
if self.empty:
return "MISS " + self.task.name
return "\n".join([self.task.name] +
["%f\t%s" % (e.logPosterior, e.program)
for e in self.normalize()])
@staticmethod
def describe(frontiers):
numberOfHits = sum(not f.empty for f in frontiers)
if numberOfHits > 0:
averageLikelihood = sum(
f.bestPosterior.logPrior for f in frontiers if not f.empty) / numberOfHits
else:
averageLikelihood = 0
return "\n".join([f.summarize() for f in frontiers] +
["Hits %d/%d tasks" % (numberOfHits, len(frontiers))] +
["Average description length of a program solving a task: %f nats" % (-averageLikelihood)])
def combine(self, other, tolerance=0.01):
'''Takes the union of the programs in each of the frontiers'''
assert self.task == other.task
foundDifference = False
x = {e.program: e for e in self}
y = {e.program: e for e in other}
programs = set(x.keys()) | set(y.keys())
union = []
for p in programs:
if p in x:
e1 = x[p]
if p in y:
e2 = y[p]
if abs(e1.logPrior - e2.logPrior) > tolerance:
eprint(
"WARNING: Log priors differed during frontier combining: %f vs %f" %
(e1.logPrior, e2.logPrior))
eprint("WARNING: \tThe program is", p)
eprint()
if abs(e1.logLikelihood - e2.logLikelihood) > tolerance:
foundDifference = True
eprint(
"WARNING: Log likelihoods deferred for %s: %f & %f" %
(p, e1.logLikelihood, e2.logLikelihood))
if hasattr(self.task, 'BIC'):
eprint("\t%d examples, BIC=%f, parameterPenalty=%f, n parameters=%d, correct likelihood=%f" %
(len(self.task.examples),
self.task.BIC,
self.task.BIC * math.log(len(self.task.examples)),
substringOccurrences("REAL", str(p)),
substringOccurrences("REAL", str(p)) * self.task.BIC * math.log(len(self.task.examples))))
e1.logLikelihood = - \
substringOccurrences("REAL", str(p)) * self.task.BIC * math.log(len(self.task.examples))
e2.logLikelihood = e1.logLikelihood
e1 = FrontierEntry(
program=e1.program,
logLikelihood=(
e1.logLikelihood +
e2.logLikelihood) /
2,
logPrior=e1.logPrior)
else:
e1 = y[p]
union.append(e1)
if foundDifference:
eprint(
"WARNING: Log likelihoods differed for the same program on the task %s.\n" %
(self.task.name),
"\tThis is acceptable only if the likelihood model is stochastic. Took the geometric mean of the likelihoods.")
return Frontier(union, self.task)
|