File size: 24,568 Bytes
e1c1753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
import inspect
import signal
import random
import time
import traceback
import sys
import os
import subprocess
import math
import pickle as pickle
from itertools import chain
import heapq
import hashlib
def computeMD5hash(my_string):
#https://stackoverflow.com/questions/13259691/convert-string-to-md5
m = hashlib.md5()
m.update(my_string.encode('utf-8'))
return m.hexdigest()
class Thunk(object):
# A class for lazy evaluation
def __init__(self, thing):
self.thing = thing
self.evaluated = False
def force(self):
if self.evaluated:
return self.thing
else:
self.thing = self.thing()
self.evaluated = True
return self.thing
def cindex(i): return lambda a: a[i]
class ConstantFunction:
def __init__(self,v): self.v = v
def __call__(self,*a,**k): return self.v
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
flushEverything()
class Bunch(object):
def __init__(self, d):
self.__dict__.update(d)
def __setitem__(self, key, item):
self.__dict__[key] = item
def __getitem__(self, key):
return self.__dict__[key]
def curry(fn):
"""Curries a function. Hacky way to return a curried version of functions with arbitrary #s of args. """
def make_curry_fn(signature):
"""Redefines a currying function with the appropriate arguments. Hacky."""
tmp_curry = 'def tmp_curry(f): return '
tmp_curry += " ".join(['lambda %s: ' % argname for argname in signature.parameters])
tmp_curry += 'f'
tmp_curry += str(signature)
return tmp_curry
exec(make_curry_fn(inspect.signature(fn)), globals())
return tmp_curry(fn)
class Curried:
def __init__(self, f, arguments=None, arity=None):
if arity is None:
arity = len(inspect.getargspec(f)[0])
self.f = f
self.arity = arity
if arguments is None: arguments = []
self.arguments = arguments
def __call__(self, x):
arguments = self.arguments + [x]
if len(arguments) == self.arity:
return self.f(*arguments)
else:
return Curried(self.f, arguments=arguments, arity=self.arity)
def __str__(self):
if len(self.arguments) == 0:
return f"Curried({self.f}/{self.arity})"
else:
return f"Curried({self.f}/{self.arity}, {', '.join(map(str,self.arguments))})"
def __repr__(self):
return str(self)
def hashable(v):
"""Determine whether `v` can be hashed."""
try:
hash(v)
except TypeError:
return False
return True
def flatten(x, abort=lambda x: False):
"""Recursively unroll iterables."""
if abort(x):
yield x
return
try:
yield from chain(*(flatten(i, abort) for i in x))
except TypeError: # not iterable
yield x
def growImage(i, iterations=2):
import numpy as np
for _ in range(iterations):
ip = np.zeros(i.shape)
# assume it is monochromatic and get the color
c = np.array([i[:,:,j].max()
for j in range(4) ])
# assume that the alpha channel indicates where the foreground is
foreground = i[:,:,3] > 0
foreground = foreground + \
np.pad(foreground, ((0,1),(0,0)), mode='constant')[1:,:] +\
np.pad(foreground, ((0,0),(0,1)), mode='constant')[:,1:] + \
np.pad(foreground, ((0,0),(1,0)), mode='constant')[:,:-1] + \
np.pad(foreground, ((1,0),(0,0)), mode='constant')[:-1,:]
ip[foreground] = c
i = ip
return ip
def summaryStatistics(n, times):
if len(times) == 0:
eprint(n, "no successful times to report statistics on!")
else:
eprint(n, "average: ", int(mean(times) + 0.5),
"sec.\tmedian:", int(median(times) + 0.5),
"\tmax:", int(max(times) + 0.5),
"\tstandard deviation", int(standardDeviation(times) + 0.5))
def updateTaskSummaryMetrics(taskSummaryMetrics, newMetricsDict, key):
"""Updates a taskSummaryMetrics dict from tasks -> metrics with new metrics under the given key."""
for task in newMetricsDict:
if task in taskSummaryMetrics:
taskSummaryMetrics[task][key] = newMetricsDict[task]
else:
taskSummaryMetrics[task] = {key : newMetricsDict[task]}
NEGATIVEINFINITY = float('-inf')
POSITIVEINFINITY = float('inf')
PARALLELMAPDATA = None
PARALLELBASESEED = None
def parallelMap(numberOfCPUs, f, *xs, chunksize=None, maxtasksperchild=None, memorySensitive=False,
seedRandom=False):
"""seedRandom: Should each parallel worker be given a different random seed?"""
global PARALLELMAPDATA
global PARALLELBASESEED
if memorySensitive:
memoryUsage = getMemoryUsageFraction()/100.
correctedCPUs = max(1,
min(int(0.9/memoryUsage),numberOfCPUs))
assert correctedCPUs <= numberOfCPUs
assert correctedCPUs >= 1
if correctedCPUs < numberOfCPUs:
eprint("In order to not use all of the memory on the machine (%f gb), we are limiting this parallel map to only use %d CPUs"%(howManyGigabytesOfMemory(),correctedCPUs))
numberOfCPUs = correctedCPUs
if numberOfCPUs == 1:
return list(map(f, *xs))
n = len(xs[0])
for x in xs:
assert len(x) == n
assert PARALLELMAPDATA is None
PARALLELMAPDATA = (f, xs)
assert PARALLELBASESEED is None
if seedRandom:
PARALLELBASESEED = random.random()
from multiprocessing import Pool
# Randomize the order in case easier ones come earlier or later
permutation = list(range(n))
random.shuffle(permutation)
inversePermutation = dict(zip(permutation, range(n)))
# Batch size of jobs as they are sent to processes
if chunksize is None:
chunksize = max(1, n // (numberOfCPUs * 2))
pool = Pool(numberOfCPUs, maxtasksperchild=maxtasksperchild)
ys = pool.map(parallelMapCallBack, permutation,
chunksize=chunksize)
pool.terminate()
PARALLELMAPDATA = None
PARALLELBASESEED = None
return [ys[inversePermutation[j]] for j in range(n)]
def parallelMapCallBack(j):
global PARALLELMAPDATA
global PARALLELBASESEED
if PARALLELBASESEED is not None:
random.seed(PARALLELBASESEED + j)
f, xs = PARALLELMAPDATA
try:
return f(*[x[j] for x in xs])
except Exception as e:
eprint(
"Exception in worker during lightweight parallel map:\n%s" %
(traceback.format_exc()))
raise e
def log(x):
t = type(x)
if t == int or t == float:
if x == 0:
return NEGATIVEINFINITY
return math.log(x)
return x.log()
def exp(x):
t = type(x)
if t == int or t == float:
return math.exp(x)
return x.exp()
def lse(x, y=None):
if y is None:
largest = None
if len(x) == 0:
raise Exception('LSE: Empty sequence')
if len(x) == 1:
return x[0]
# If these are just numbers...
t = type(x[0])
if t == int or t == float:
largest = max(*x)
return largest + math.log(sum(math.exp(z - largest) for z in x))
#added clause to avoid zero -dim tensor problem
import torch
if t == torch.Tensor and x[0].size() == torch.Size([]):
return torchSoftMax([datum.view(1) for datum in x])
# Must be torch
return torchSoftMax(x)
else:
if x is NEGATIVEINFINITY:
return y
if y is NEGATIVEINFINITY:
return x
tx = type(x)
ty = type(y)
if (ty == int or ty == float) and (tx == int or tx == float):
if x > y:
return x + math.log(1. + math.exp(y - x))
else:
return y + math.log(1. + math.exp(x - y))
return torchSoftMax(x, y)
def torchSoftMax(x, y=None):
from torch.nn.functional import log_softmax
import torch
if y is None:
if isinstance(x, list):
x = torch.cat(x)
return (x - log_softmax(x, dim=0))[0]
x = torch.cat((x, y))
# this is so stupid
return (x - log_softmax(x, dim=0))[0]
def invalid(x):
return math.isinf(x) or math.isnan(x)
def valid(x): return not invalid(x)
def forkCallBack(x):
[f, a, k] = x
try:
return f(*a, **k)
except Exception as e:
eprint(
"Exception in worker during forking:\n%s" %
(traceback.format_exc()))
raise e
def callFork(f, *arguments, **kw):
"""Forks a new process to execute the call. Blocks until the call completes."""
global FORKPARAMETERS
from multiprocessing import Pool
workers = Pool(1)
ys = workers.map(forkCallBack, [[f, arguments, kw]])
workers.terminate()
assert len(ys) == 1
return ys[0]
PARALLELPROCESSDATA = None
def launchParallelProcess(f, *a, **k):
global PARALLELPROCESSDATA
PARALLELPROCESSDATA = [f, a, k]
from multiprocessing import Process
p = Process(target=_launchParallelProcess, args=tuple([]))
p.start()
PARALLELPROCESSDATA = None
return p
def _launchParallelProcess():
global PARALLELPROCESSDATA
[f, a, k] = PARALLELPROCESSDATA
try:
f(*a, **k)
except Exception as e:
eprint(
"Exception in worker during forking:\n%s" %
(traceback.format_exc()))
raise e
def jsonBinaryInvoke(binary, message):
import json
import subprocess
import os
message = json.dumps(message)
try:
process = subprocess.Popen(binary,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
response, error = process.communicate(bytes(message, encoding="utf-8"))
except OSError as exc:
raise exc
try:
response = json.loads(response.decode("utf-8"))
except Exception as e:
eprint("Could not parse json.")
with open("/tmp/_message","w") as handle:
handle.write(message)
with open("/tmp/_response","w") as handle:
handle.write(response.decode("utf-8"))
raise e
return response
class CompiledTimeout(Exception):
pass
def get_root_dir():
"""
Returns the absolute path to the root directory of the repository as a string.
This method is primarily used in order to locate the binaries at the root of the
repository.
"""
return os.path.join(os.path.dirname(__file__), os.pardir)
def get_data_dir():
"""
Returns the absolute path to the data directory of the repository as a string.
"""
return os.path.join(get_root_dir(), 'data')
def callCompiled(f, *arguments, **keywordArguments):
import dill
pypyArgs = []
profile = keywordArguments.pop('profile', None)
if profile:
pypyArgs = ['-m', 'vmprof', '-o', profile]
PIDCallBack = keywordArguments.pop("PIDCallBack", None)
timeout = keywordArguments.pop('compiledTimeout', None)
# Use absolute paths.
compiled_driver_file = os.path.join(get_root_dir(), 'bin', 'compiledDriver.py')
p = subprocess.Popen(['pypy3'] + pypyArgs + [compiled_driver_file],
stdin=subprocess.PIPE, stdout=subprocess.PIPE)
if PIDCallBack is not None:
PIDCallBack(p.pid)
request = {
"function": f,
"arguments": arguments,
"keywordArguments": keywordArguments,
}
start = time.time()
dill.dump(request, p.stdin)
#p.stdin.write(request)
p.stdin.flush()
#p.stdin.close()
dt = time.time() - start
if dt > 1:
eprint("(Python side of compiled driver: SLOW) Wrote serialized message for {} in time {}".format(
f.__name__,
dt))
if timeout is None:
success, result = dill.load(p.stdout)
else:
eprint("Running with timeout", timeout)
def timeoutCallBack(_1, _2): raise CompiledTimeout()
signal.signal(signal.SIGALRM, timeoutCallBack)
signal.alarm(int(math.ceil(timeout)))
try:
success, result = dill.load(p.stdout)
signal.alarm(0)
except CompiledTimeout:
# Kill the process
p.kill()
raise CompiledTimeout()
if not success:
sys.exit(1)
return result
class timing(object):
def __init__(self, message):
self.message = message
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, type, value, traceback):
dt = time.time() - self.start
if isinstance(self.message, str): message = self.message
elif callable(self.message): message = self.message(dt)
else: assert False, "Timing message should be string function"
eprint("%s in %.1f seconds" % (message, dt))
class random_seed(object):
def __init__(self, seed):
self.seed = seed
def __enter__(self):
self._oldSeed = random.getstate()
random.seed(self.seed)
return self
def __exit__(self, type, value, traceback):
random.setstate(self._oldSeed)
def randomPermutation(l):
import random
l = list(l)
random.shuffle(l)
return l
def batches(data, size=1):
import random
# Randomly permute the data
data = list(data)
random.shuffle(data)
start = 0
while start < len(data):
yield data[start:size + start]
start += size
def sampleDistribution(d):
"""
Expects d to be a list of tuples
The first element should be the probability
If the tuples are of length 2 then it returns the second element
Otherwise it returns the suffix tuple
"""
import random
z = float(sum(t[0] for t in d))
if z == 0.:
eprint("sampleDistribution: z = 0")
eprint(d)
r = random.random()
u = 0.
for index, t in enumerate(d):
p = t[0] / z
# This extra condition is needed for floating-point bullshit
if r <= u + p or index == len(d) - 1:
if len(t) <= 2:
return t[1]
else:
return t[1:]
u += p
assert False
def sampleLogDistribution(d):
"""
Expects d to be a list of tuples
The first element should be the log probability
If the tuples are of length 2 then it returns the second element
Otherwise it returns the suffix tuple
"""
import random
z = lse([t[0] for t in d])
r = random.random()
u = 0.
for t in d:
p = math.exp(t[0] - z)
if r < u + p:
if len(t) <= 2:
return t[1]
else:
return t[1:]
u += p
assert False
def testTrainSplit(x, trainingFraction, seed=0):
if trainingFraction > 1.1:
# Assume that the training fraction is actually the number of tasks
# that we want to train on
trainingFraction = float(trainingFraction) / len(x)
needToTrain = { j for j, d in enumerate(x)
if hasattr(d, 'mustTrain') and d.mustTrain }
mightTrain = [j for j in range(len(x)) if j not in needToTrain]
trainingSize = max(0, int(len(x) * trainingFraction - len(needToTrain)))
import random
random.seed(seed)
random.shuffle(mightTrain)
training = set(mightTrain[:trainingSize]) | needToTrain
train = [t for j, t in enumerate(x) if j in training]
test = [t for j, t in enumerate(x) if j not in training]
return test, train
def numberOfCPUs():
import multiprocessing
return multiprocessing.cpu_count()
def loadPickle(f):
with open(f, 'rb') as handle:
d = pickle.load(handle)
return d
def dumpPickle(o,f):
with open(f, 'wb') as handle:
pickle.dump(o,handle)
def fst(l):
for v in l:
return v
def mean(l):
n = 0
t = None
for x in l:
if t is None:
t = x
else:
t = t + x
n += 1
if n == 0:
eprint("warning: asked to calculate the mean of an empty list. returning zero.")
return 0
return t / float(n)
def variance(l):
m = mean(l)
return sum((x - m)**2 for x in l) / len(l)
def standardDeviation(l): return variance(l)**0.5
def median(l):
if len(l) <= 0:
return None
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
return 0.5 * (l[len(l) // 2] + l[len(l) // 2 - 1])
def percentile(l, p):
l = sorted(l)
j = int(len(l)*p)
if j < len(l):
return l[j]
return 0
def makeTemporaryFile(directory="/tmp"):
import tempfile
fd,p = tempfile.mkstemp(dir=directory)
os.close(fd)
return p
class Stopwatch():
def __init__(self):
self._elapsed = 0.
self.running = False
self._latestStart = None
def start(self):
if self.running:
eprint(
"(stopwatch: attempted to start an already running stopwatch. Silently ignoring.)")
return
self.running = True
self._latestStart = time.time()
def stop(self):
if not self.running:
eprint(
"(stopwatch: attempted to stop a stopwatch that is not running. Silently ignoring.)")
return
self.running = False
self._elapsed += time.time() - self._latestStart
self._latestStart = None
@property
def elapsed(self):
e = self._elapsed
if self.running:
e = e + time.time() - self._latestStart
return e
def userName():
import getpass
return getpass.getuser()
def hostname():
import socket
return socket.gethostname()
def getPID():
return os.getpid()
def CPULoad():
try:
import psutil
except BaseException:
return "unknown - install psutil"
return psutil.cpu_percent()
def flushEverything():
sys.stdout.flush()
sys.stderr.flush()
class RunWithTimeout(Exception):
pass
def runWithTimeout(k, timeout):
if timeout is None: return k()
def timeoutCallBack(_1,_2):
raise RunWithTimeout()
signal.signal(signal.SIGPROF, timeoutCallBack)
signal.setitimer(signal.ITIMER_PROF, timeout)
try:
result = k()
signal.signal(signal.SIGPROF, lambda *_:None)
signal.setitimer(signal.ITIMER_PROF, 0)
return result
except RunWithTimeout:
signal.signal(signal.SIGPROF, lambda *_:None)
signal.setitimer(signal.ITIMER_PROF, 0)
raise RunWithTimeout()
except:
signal.signal(signal.SIGPROF, lambda *_:None)
signal.setitimer(signal.ITIMER_PROF, 0)
raise
def crossProduct(a, b):
b = list(b)
for x in a:
for y in b:
yield x, y
class PQ(object):
"""why the fuck does Python not wrap this in a class"""
def __init__(self):
self.h = []
self.index2value = {}
self.nextIndex = 0
def push(self, priority, v):
self.index2value[self.nextIndex] = v
heapq.heappush(self.h, (-priority, self.nextIndex))
self.nextIndex += 1
def popMaximum(self):
i = heapq.heappop(self.h)[1]
v = self.index2value[i]
del self.index2value[i]
return v
def __iter__(self):
for _, v in self.h:
yield self.index2value[v]
def __len__(self): return len(self.h)
class UnionFind:
class Class:
def __init__(self, x):
self.members = {x}
self.leader = None
def chase(self):
k = self
while k.leader is not None:
k = k.leader
self.leader = k
return k
def __init__(self):
# Map from keys to classes
self.classes = {}
def unify(self,x,y):
k1 = self.classes[x].chase()
k2 = self.classes[y].chase()
# k2 will be the new leader
k1.leader = k2
k2.members |= k1.members
k1.members = None
self.classes[x] = k2
self.classes[y] = k2
return k2
def newClass(self,x):
if x not in self.classes:
n = Class(x)
self.classes[x] = n
def otherMembers(self,x):
k = self.classes[x].chase()
self.classes[x] = k
return k.members
def substringOccurrences(ss, s):
return sum(s[i:].startswith(ss) for i in range(len(s)))
def normal(s=1., m=0.):
u = random.random()
v = random.random()
n = math.sqrt(-2.0 * log(u)) * math.cos(2.0 * math.pi * v)
return s * n + m
def powerOfTen(n):
if n <= 0:
return False
while True:
if n == 1:
return True
if n % 10 != 0:
return False
n = n / 10
def powerOf(p, n):
if n <= 0:
return False
while True:
if n == 1:
return True
if n % p != 0:
return False
n = n / p
def getThisMemoryUsage():
import os
import psutil
process = psutil.Process(os.getpid())
return process.memory_info().rss
def getMemoryUsageFraction():
import psutil
return psutil.virtual_memory().percent
def howManyGigabytesOfMemory():
import psutil
return psutil.virtual_memory().total/10**9
def tuplify(x):
if isinstance(x,(list,tuple)): return tuple(tuplify(z) for z in x)
return x
# image montage!
def makeNiceArray(l, columns=None):
n = columns or int(len(l)**0.5)
a = []
while l:
a.append(l[:n])
l = l[n:]
return a
def montageMatrix(matrix):
import numpy as np
arrays = matrix
m = max(len(t) for t in arrays)
size = arrays[0][0].shape
tp = arrays[0][0].dtype
arrays = [np.concatenate(ts + [np.zeros(size, dtype=tp)] * (m - len(ts)), axis=1) for ts in arrays]
arrays = np.concatenate(arrays, axis=0)
return arrays
def montage(arrays, columns=None):
return montageMatrix(makeNiceArray(arrays, columns=columns))
def showArrayAsImage(a):
from pylab import imshow,show
imshow(a)
show()
class ParseFailure(Exception):
pass
def parseSExpression(s):
s = s.strip()
def p(n):
while n <= len(s) and s[n].isspace(): n += 1
if n == len(s): raise ParseFailure(s)
if s[n] == '#':
e,n = p(n + 1)
return ['#', e],n
if s[n] == '(':
l = []
n += 1
while True:
x,n = p(n)
l.append(x)
while n <= len(s) and s[n].isspace(): n += 1
if n == len(s): raise ParseFailure(s)
if s[n] == ')':
n += 1
break
return l,n
name = []
while n < len(s) and not s[n].isspace() and s[n] not in '()':
name.append(s[n])
n += 1
name = "".join(name)
return name,n
e,n = p(0)
if n == len(s):
return e
raise ParseFailure(s)
def diffuseImagesOutward(imageCoordinates, labelCoordinates, d,
maximumRadius = 2.5, minimumRadius = 1.5):
import numpy as np
n = imageCoordinates.shape[0]
#d = (np.random.rand(n,2)*2 - 1)*(maximumRadius/2 + minimumRadius/2)
def _constrainRadii(p):
r = (p*p).sum()
if r > maximumRadius:
return maximumRadius*p/(r**0.5)
if r < minimumRadius:
return minimumRadius*p/(r**0.5)
return p
def constrainRadii():
for j in range(n):
d[j,:] = _constrainRadii(d[j,:])
for _ in range(10):
for i in range(n):
force = np.array([0.,0.])
for j in range(n):
if i == j: continue
p1 = imageCoordinates[i] + d[i]
p2 = imageCoordinates[j] + d[j]
l = ((p1 - p2)**2).sum()**0.5
if l > 1.5: continue
force += (p1 - p2)/l/max(l,0.2)
if force.sum() > 0:
force = force/( (force*force).sum()**0.5)
d[i] += force
constrainRadii()
return d
if __name__ == "__main__":
def f(n):
if n == 0: return None
return [f(n - 1),f(n - 1)]
z = f(22)
eprint(getMemoryUsageFraction().percent)
eprint(getThisMemoryUsage())
|