File size: 24,568 Bytes
e1c1753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import inspect
import signal
import random
import time
import traceback
import sys
import os
import subprocess
import math
import pickle as pickle
from itertools import chain
import heapq

import hashlib

def computeMD5hash(my_string):
    #https://stackoverflow.com/questions/13259691/convert-string-to-md5
    m = hashlib.md5()
    m.update(my_string.encode('utf-8'))
    return m.hexdigest()


class Thunk(object):
    # A class for lazy evaluation
    def __init__(self, thing):
        self.thing = thing
        self.evaluated = False 

    def force(self):
        if self.evaluated:
            return self.thing
        else: 
            self.thing = self.thing()
            self.evaluated = True
            return self.thing

def cindex(i): return lambda a: a[i]

class ConstantFunction:
    def __init__(self,v): self.v = v
    def __call__(self,*a,**k): return self.v

def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)
    flushEverything()


class Bunch(object):
    def __init__(self, d):
        self.__dict__.update(d)

    def __setitem__(self, key, item):
        self.__dict__[key] = item

    def __getitem__(self, key):
        return self.__dict__[key]

def curry(fn):
    """Curries a function. Hacky way to return a curried version of functions with arbitrary #s of args. """
    def make_curry_fn(signature):
        """Redefines a currying function with the appropriate arguments. Hacky."""
        tmp_curry = 'def tmp_curry(f): return ' 
        tmp_curry += " ".join(['lambda %s: ' % argname for argname in signature.parameters])
        tmp_curry += 'f'
        tmp_curry += str(signature)
        return tmp_curry
    exec(make_curry_fn(inspect.signature(fn)), globals())
    return tmp_curry(fn)

class Curried:
    def __init__(self, f, arguments=None, arity=None):
        if arity is None:
            arity = len(inspect.getargspec(f)[0])
        self.f = f
        self.arity = arity
        if arguments is None: arguments = []
        self.arguments = arguments

    def __call__(self, x):
        arguments = self.arguments + [x]
        if len(arguments) == self.arity:
            return self.f(*arguments)
        else:
            return Curried(self.f, arguments=arguments, arity=self.arity)

    def __str__(self):
        if len(self.arguments) == 0:
            return f"Curried({self.f}/{self.arity})"
        else:
            return f"Curried({self.f}/{self.arity}, {', '.join(map(str,self.arguments))})"

    def __repr__(self):
        return str(self)
            

def hashable(v):
    """Determine whether `v` can be hashed."""
    try:
        hash(v)
    except TypeError:
        return False
    return True


def flatten(x, abort=lambda x: False):
    """Recursively unroll iterables."""
    if abort(x):
        yield x
        return
    try:
        yield from chain(*(flatten(i, abort) for i in x))
    except TypeError:  # not iterable
        yield x

def growImage(i, iterations=2):
    import numpy as np
    for _ in range(iterations):
        ip = np.zeros(i.shape)
        # assume it is monochromatic and get the color
        c = np.array([i[:,:,j].max()
                      for j in range(4) ])
        # assume that the alpha channel indicates where the foreground is
        foreground = i[:,:,3] > 0
        foreground = foreground + \
                     np.pad(foreground, ((0,1),(0,0)), mode='constant')[1:,:] +\
                     np.pad(foreground, ((0,0),(0,1)), mode='constant')[:,1:] + \
                     np.pad(foreground, ((0,0),(1,0)), mode='constant')[:,:-1] + \
                     np.pad(foreground, ((1,0),(0,0)), mode='constant')[:-1,:]
        ip[foreground] = c
        i = ip
    return ip
                        
                

def summaryStatistics(n, times):
    if len(times) == 0:
        eprint(n, "no successful times to report statistics on!")
    else:
        eprint(n, "average: ", int(mean(times) + 0.5),
               "sec.\tmedian:", int(median(times) + 0.5),
               "\tmax:", int(max(times) + 0.5),
               "\tstandard deviation", int(standardDeviation(times) + 0.5))

def updateTaskSummaryMetrics(taskSummaryMetrics, newMetricsDict, key):
    """Updates a taskSummaryMetrics dict from tasks -> metrics with new metrics under the given key."""
    for task in newMetricsDict:
        if task in taskSummaryMetrics:
            taskSummaryMetrics[task][key] = newMetricsDict[task]
        else:
            taskSummaryMetrics[task] = {key : newMetricsDict[task]}

NEGATIVEINFINITY = float('-inf')
POSITIVEINFINITY = float('inf')

PARALLELMAPDATA = None
PARALLELBASESEED = None


def parallelMap(numberOfCPUs, f, *xs, chunksize=None, maxtasksperchild=None, memorySensitive=False,
                seedRandom=False):
    """seedRandom: Should each parallel worker be given a different random seed?"""
    global PARALLELMAPDATA
    global PARALLELBASESEED

    if memorySensitive:
        memoryUsage = getMemoryUsageFraction()/100.
        correctedCPUs = max(1,
                            min(int(0.9/memoryUsage),numberOfCPUs))
        assert correctedCPUs <= numberOfCPUs
        assert correctedCPUs >= 1
        if correctedCPUs < numberOfCPUs:
            eprint("In order to not use all of the memory on the machine (%f gb), we are limiting this parallel map to only use %d CPUs"%(howManyGigabytesOfMemory(),correctedCPUs))
        numberOfCPUs = correctedCPUs
        

    if numberOfCPUs == 1:
        return list(map(f, *xs))

    n = len(xs[0])
    for x in xs:
        assert len(x) == n

    assert PARALLELMAPDATA is None    
    PARALLELMAPDATA = (f, xs)
    assert PARALLELBASESEED is None
    if seedRandom:
        PARALLELBASESEED = random.random()

    from multiprocessing import Pool

    # Randomize the order in case easier ones come earlier or later
    permutation = list(range(n))
    random.shuffle(permutation)
    inversePermutation = dict(zip(permutation, range(n)))

    # Batch size of jobs as they are sent to processes
    if chunksize is None:
        chunksize = max(1, n // (numberOfCPUs * 2))
    pool = Pool(numberOfCPUs, maxtasksperchild=maxtasksperchild)
    ys = pool.map(parallelMapCallBack, permutation,
                  chunksize=chunksize)
    pool.terminate()

    PARALLELMAPDATA = None
    PARALLELBASESEED = None
    return [ys[inversePermutation[j]] for j in range(n)]


def parallelMapCallBack(j):
    global PARALLELMAPDATA
    global PARALLELBASESEED
    if PARALLELBASESEED is not None:
        random.seed(PARALLELBASESEED + j)
    f, xs = PARALLELMAPDATA
    try:
        return f(*[x[j] for x in xs])
    except Exception as e:
        eprint(
            "Exception in worker during lightweight parallel map:\n%s" %
            (traceback.format_exc()))
        raise e


def log(x):
    t = type(x)
    if t == int or t == float:
        if x == 0:
            return NEGATIVEINFINITY
        return math.log(x)
    return x.log()


def exp(x):
    t = type(x)
    if t == int or t == float:
        return math.exp(x)
    return x.exp()


def lse(x, y=None):
    if y is None:
        largest = None
        if len(x) == 0:
            raise Exception('LSE: Empty sequence')
        if len(x) == 1:
            return x[0]
        # If these are just numbers...
        t = type(x[0])
        if t == int or t == float:
            largest = max(*x)
            return largest + math.log(sum(math.exp(z - largest) for z in x))
        #added clause to avoid zero -dim tensor problem
        import torch
        if t == torch.Tensor and x[0].size() == torch.Size([]):
            return torchSoftMax([datum.view(1) for datum in x])
        # Must be torch
        return torchSoftMax(x)
    else:
        if x is NEGATIVEINFINITY:
            return y
        if y is NEGATIVEINFINITY:
            return x
        tx = type(x)
        ty = type(y)
        if (ty == int or ty == float) and (tx == int or tx == float):
            if x > y:
                return x + math.log(1. + math.exp(y - x))
            else:
                return y + math.log(1. + math.exp(x - y))
        return torchSoftMax(x, y)


def torchSoftMax(x, y=None):
    from torch.nn.functional import log_softmax
    import torch
    if y is None:
        if isinstance(x, list):
            x = torch.cat(x)
        return (x - log_softmax(x, dim=0))[0]
    x = torch.cat((x, y))
    # this is so stupid
    return (x - log_softmax(x, dim=0))[0]


def invalid(x):
    return math.isinf(x) or math.isnan(x)


def valid(x): return not invalid(x)


def forkCallBack(x):
    [f, a, k] = x
    try:
        return f(*a, **k)
    except Exception as e:
        eprint(
            "Exception in worker during forking:\n%s" %
            (traceback.format_exc()))
        raise e


def callFork(f, *arguments, **kw):
    """Forks a new process to execute the call. Blocks until the call completes."""
    global FORKPARAMETERS

    from multiprocessing import Pool

    workers = Pool(1)
    ys = workers.map(forkCallBack, [[f, arguments, kw]])
    workers.terminate()
    assert len(ys) == 1
    return ys[0]


PARALLELPROCESSDATA = None


def launchParallelProcess(f, *a, **k):
    global PARALLELPROCESSDATA

    PARALLELPROCESSDATA = [f, a, k]

    from multiprocessing import Process
    p = Process(target=_launchParallelProcess, args=tuple([]))
    p.start()
    PARALLELPROCESSDATA = None
    return p


def _launchParallelProcess():
    global PARALLELPROCESSDATA
    [f, a, k] = PARALLELPROCESSDATA
    try:
        f(*a, **k)
    except Exception as e:
        eprint(
            "Exception in worker during forking:\n%s" %
            (traceback.format_exc()))
        raise e


def jsonBinaryInvoke(binary, message):
    import json
    import subprocess
    import os

    message = json.dumps(message)
    try:
        process = subprocess.Popen(binary,
                                   stdin=subprocess.PIPE,
                                   stdout=subprocess.PIPE)
        response, error = process.communicate(bytes(message, encoding="utf-8"))
    except OSError as exc:
        raise exc
    try:
        response = json.loads(response.decode("utf-8"))
    except Exception as e:
        eprint("Could not parse json.")
        with open("/tmp/_message","w") as handle:
            handle.write(message)
        with open("/tmp/_response","w") as handle:
            handle.write(response.decode("utf-8"))
        raise e
    return response

    
class CompiledTimeout(Exception):
    pass


def get_root_dir():
    """
    Returns the absolute path to the root directory of the repository as a string.

    This method is primarily used in order to locate the binaries at the root of the
    repository.
    """
    return os.path.join(os.path.dirname(__file__), os.pardir)


def get_data_dir():
    """
    Returns the absolute path to the data directory of the repository as a string.
    """
    return os.path.join(get_root_dir(), 'data')


def callCompiled(f, *arguments, **keywordArguments):
    import dill

    pypyArgs = []
    profile = keywordArguments.pop('profile', None)
    if profile:
        pypyArgs = ['-m', 'vmprof', '-o', profile]

    PIDCallBack = keywordArguments.pop("PIDCallBack", None)

    timeout = keywordArguments.pop('compiledTimeout', None)

    # Use absolute paths.
    compiled_driver_file = os.path.join(get_root_dir(), 'bin', 'compiledDriver.py')
    p = subprocess.Popen(['pypy3'] + pypyArgs + [compiled_driver_file],
                         stdin=subprocess.PIPE, stdout=subprocess.PIPE)


    if PIDCallBack is not None:
        PIDCallBack(p.pid)

    request = {
        "function": f,
        "arguments": arguments,
        "keywordArguments": keywordArguments,
    }
    start = time.time()
    dill.dump(request, p.stdin)

    #p.stdin.write(request)
    p.stdin.flush()
    #p.stdin.close()



    dt = time.time() - start
    if dt > 1:
        eprint("(Python side of compiled driver: SLOW) Wrote serialized message for {} in time {}".format(
                f.__name__,
                dt))

    if timeout is None:
        success, result = dill.load(p.stdout)
    else:
        eprint("Running with timeout", timeout)

        def timeoutCallBack(_1, _2): raise CompiledTimeout()
        signal.signal(signal.SIGALRM, timeoutCallBack)
        signal.alarm(int(math.ceil(timeout)))
        try:
            success, result = dill.load(p.stdout)
            signal.alarm(0)
        except CompiledTimeout:
            # Kill the process
            p.kill()
            raise CompiledTimeout()

    if not success:
        sys.exit(1)

    return result


class timing(object):
    def __init__(self, message):
        self.message = message

    def __enter__(self):
        self.start = time.time()
        return self

    def __exit__(self, type, value, traceback):
        dt = time.time() - self.start
        if isinstance(self.message, str): message = self.message
        elif callable(self.message): message = self.message(dt)
        else: assert False, "Timing message should be string function"
        eprint("%s in %.1f seconds" % (message, dt))

class random_seed(object):
    def __init__(self, seed):
        self.seed = seed

    def __enter__(self):
        self._oldSeed = random.getstate()
        random.seed(self.seed)
        return self

    def __exit__(self, type, value, traceback):
        random.setstate(self._oldSeed)


def randomPermutation(l):
    import random
    l = list(l)
    random.shuffle(l)
    return l


def batches(data, size=1):
    import random
    # Randomly permute the data
    data = list(data)
    random.shuffle(data)

    start = 0
    while start < len(data):
        yield data[start:size + start]
        start += size


def sampleDistribution(d):
    """
    Expects d to be a list of tuples
    The first element should be the probability
    If the tuples are of length 2 then it returns the second element
    Otherwise it returns the suffix tuple
    """
    import random

    z = float(sum(t[0] for t in d))
    if z == 0.:
        eprint("sampleDistribution: z = 0")
        eprint(d)
    r = random.random()
    u = 0.
    for index, t in enumerate(d):
        p = t[0] / z
        # This extra condition is needed for floating-point bullshit
        if r <= u + p or index == len(d) - 1:
            if len(t) <= 2:
                return t[1]
            else:
                return t[1:]
        u += p
        
    assert False


def sampleLogDistribution(d):
    """
    Expects d to be a list of tuples
    The first element should be the log probability
    If the tuples are of length 2 then it returns the second element
    Otherwise it returns the suffix tuple
    """
    import random

    z = lse([t[0] for t in d])
    r = random.random()
    u = 0.
    for t in d:
        p = math.exp(t[0] - z)
        if r < u + p:
            if len(t) <= 2:
                return t[1]
            else:
                return t[1:]
        u += p
    assert False


def testTrainSplit(x, trainingFraction, seed=0):
    if trainingFraction > 1.1:
        # Assume that the training fraction is actually the number of tasks
        # that we want to train on
        trainingFraction = float(trainingFraction) / len(x)
    needToTrain = { j for j, d in enumerate(x)
                    if hasattr(d, 'mustTrain') and d.mustTrain }
    mightTrain = [j for j in range(len(x)) if j not in needToTrain]

    trainingSize = max(0, int(len(x) * trainingFraction - len(needToTrain)))

    import random
    random.seed(seed)
    random.shuffle(mightTrain)
    training = set(mightTrain[:trainingSize]) | needToTrain

    train = [t for j, t in enumerate(x) if j in training]
    test = [t for j, t in enumerate(x) if j not in training]
    return test, train


def numberOfCPUs():
    import multiprocessing
    return multiprocessing.cpu_count()


def loadPickle(f):
    with open(f, 'rb') as handle:
        d = pickle.load(handle)
    return d

def dumpPickle(o,f):
    with open(f, 'wb') as handle:
        pickle.dump(o,handle)


def fst(l):
    for v in l:
        return v


def mean(l):
    n = 0
    t = None
    for x in l:
        if t is None:
            t = x
        else:
            t = t + x
        n += 1

    if n == 0:
        eprint("warning: asked to calculate the mean of an empty list. returning zero.")
        return 0
    return t / float(n)


def variance(l):
    m = mean(l)
    return sum((x - m)**2 for x in l) / len(l)


def standardDeviation(l): return variance(l)**0.5


def median(l):
    if len(l) <= 0:
        return None
    l = sorted(l)
    if len(l) % 2 == 1:
        return l[len(l) // 2]
    return 0.5 * (l[len(l) // 2] + l[len(l) // 2 - 1])

def percentile(l, p):
    l = sorted(l)
    j = int(len(l)*p)
    if j < len(l):
        return l[j]
    return 0

def makeTemporaryFile(directory="/tmp"):
    import tempfile
    fd,p = tempfile.mkstemp(dir=directory)
    os.close(fd)
    return p

class Stopwatch():
    def __init__(self):
        self._elapsed = 0.
        self.running = False
        self._latestStart = None

    def start(self):
        if self.running:
            eprint(
                "(stopwatch: attempted to start an already running stopwatch. Silently ignoring.)")
            return
        self.running = True
        self._latestStart = time.time()

    def stop(self):
        if not self.running:
            eprint(
                "(stopwatch: attempted to stop a stopwatch that is not running. Silently ignoring.)")
            return
        self.running = False
        self._elapsed += time.time() - self._latestStart
        self._latestStart = None

    @property
    def elapsed(self):
        e = self._elapsed
        if self.running:
            e = e + time.time() - self._latestStart
        return e


def userName():
    import getpass
    return getpass.getuser()


def hostname():
    import socket
    return socket.gethostname()


def getPID():
    return os.getpid()


def CPULoad():
    try:
        import psutil
    except BaseException:
        return "unknown - install psutil"
    return psutil.cpu_percent()


def flushEverything():
    sys.stdout.flush()
    sys.stderr.flush()


class RunWithTimeout(Exception):
    pass


def runWithTimeout(k, timeout):
    if timeout is None: return k()
    def timeoutCallBack(_1,_2):
        raise RunWithTimeout()
    signal.signal(signal.SIGPROF, timeoutCallBack)
    signal.setitimer(signal.ITIMER_PROF, timeout)
    
    try:
        result = k()
        signal.signal(signal.SIGPROF, lambda *_:None)
        signal.setitimer(signal.ITIMER_PROF, 0)
        return result
    except RunWithTimeout:
        signal.signal(signal.SIGPROF, lambda *_:None)
        signal.setitimer(signal.ITIMER_PROF, 0)
        raise RunWithTimeout()
    except:
        signal.signal(signal.SIGPROF, lambda *_:None)
        signal.setitimer(signal.ITIMER_PROF, 0)
        raise


def crossProduct(a, b):
    b = list(b)
    for x in a:
        for y in b:
            yield x, y


class PQ(object):
    """why the fuck does Python not wrap this in a class"""

    def __init__(self):
        self.h = []
        self.index2value = {}
        self.nextIndex = 0

    def push(self, priority, v):
        self.index2value[self.nextIndex] = v
        heapq.heappush(self.h, (-priority, self.nextIndex))
        self.nextIndex += 1

    def popMaximum(self):
        i = heapq.heappop(self.h)[1]
        v = self.index2value[i]
        del self.index2value[i]
        return v

    def __iter__(self):
        for _, v in self.h:
            yield self.index2value[v]

    def __len__(self): return len(self.h)

class UnionFind:
    class Class:
        def __init__(self, x):
            self.members = {x}
            self.leader = None
        def chase(self):
            k = self
            while k.leader is not None:
                k = k.leader
            self.leader = k
            return k
            
    def __init__(self):
        # Map from keys to classes
        self.classes = {}
    def unify(self,x,y):
        k1 = self.classes[x].chase()
        k2 = self.classes[y].chase()
        # k2 will be the new leader
        k1.leader = k2
        k2.members |= k1.members
        k1.members = None
        self.classes[x] = k2
        self.classes[y] = k2
        return k2
    def newClass(self,x):
        if x not in self.classes:
            n = Class(x)
            self.classes[x] = n

    def otherMembers(self,x):
        k = self.classes[x].chase()
        self.classes[x] = k
        return k.members        
        

def substringOccurrences(ss, s):
    return sum(s[i:].startswith(ss) for i in range(len(s)))


def normal(s=1., m=0.):
    u = random.random()
    v = random.random()

    n = math.sqrt(-2.0 * log(u)) * math.cos(2.0 * math.pi * v)

    return s * n + m

def powerOfTen(n):
    if n <= 0:
        return False
    while True:
        if n == 1:
            return True
        if n % 10 != 0:
            return False
        n = n / 10

def powerOf(p, n):
    if n <= 0:
        return False
    while True:
        if n == 1:
            return True
        if n % p != 0:
            return False
        n = n / p


def getThisMemoryUsage():
    import os
    import psutil
    process = psutil.Process(os.getpid())
    return process.memory_info().rss
def getMemoryUsageFraction():
    import psutil
    return psutil.virtual_memory().percent
def howManyGigabytesOfMemory():
    import psutil
    return psutil.virtual_memory().total/10**9

def tuplify(x):
    if isinstance(x,(list,tuple)): return tuple(tuplify(z) for z in x)
    return x

# image montage!
def makeNiceArray(l, columns=None):
    n = columns or int(len(l)**0.5)
    a = []
    while l:
        a.append(l[:n])
        l = l[n:]
    return a
def montageMatrix(matrix):
    import numpy as np
    arrays = matrix
    m = max(len(t) for t in arrays)

    size = arrays[0][0].shape
    tp = arrays[0][0].dtype

    arrays = [np.concatenate(ts + [np.zeros(size, dtype=tp)] * (m - len(ts)), axis=1) for ts in arrays]
    arrays = np.concatenate(arrays, axis=0)
    return arrays
def montage(arrays, columns=None):
    return montageMatrix(makeNiceArray(arrays, columns=columns))

def showArrayAsImage(a):
    from pylab import imshow,show
    imshow(a)
    show()



class ParseFailure(Exception):
    pass

def parseSExpression(s):
    s = s.strip()
    def p(n):
        while n <= len(s) and s[n].isspace(): n += 1
        if n == len(s): raise ParseFailure(s)
        if s[n] == '#':
            e,n = p(n + 1)
            return ['#', e],n
        if s[n] == '(':
            l = []
            n += 1
            while True:
                x,n = p(n)
                l.append(x)
                while n <= len(s) and s[n].isspace(): n += 1
                if n == len(s): raise ParseFailure(s)
                if s[n] == ')':
                    n += 1
                    break
            return l,n
        name = []
        while n < len(s) and not s[n].isspace() and s[n] not in '()':
            name.append(s[n])
            n += 1
        name = "".join(name)
        return name,n
    e,n = p(0)
    if n == len(s):
        return e
    raise ParseFailure(s)


def diffuseImagesOutward(imageCoordinates, labelCoordinates, d,
			 maximumRadius = 2.5, minimumRadius = 1.5):
    import numpy as np
    
    n = imageCoordinates.shape[0]
    #d = (np.random.rand(n,2)*2 - 1)*(maximumRadius/2 + minimumRadius/2)

    def _constrainRadii(p):
        r = (p*p).sum()
        if r > maximumRadius:
            return maximumRadius*p/(r**0.5)
        if r < minimumRadius:
            return minimumRadius*p/(r**0.5)
        return p
    def constrainRadii():
        for j in range(n):
            d[j,:] = _constrainRadii(d[j,:])

    for _ in range(10):
        for i in range(n):
            force = np.array([0.,0.])
            for j in range(n):
                if i == j: continue
                p1 = imageCoordinates[i] + d[i]
                p2 = imageCoordinates[j] + d[j]
                l = ((p1 - p2)**2).sum()**0.5
                if l > 1.5: continue
                force += (p1 - p2)/l/max(l,0.2)
            if force.sum() > 0:
                force = force/( (force*force).sum()**0.5)
                d[i] += force
        constrainRadii()
    return d

if __name__ == "__main__":
    def f(n):
        if n == 0: return None
        return [f(n - 1),f(n - 1)]
    z = f(22)
    eprint(getMemoryUsageFraction().percent)
    eprint(getThisMemoryUsage())