File size: 52,906 Bytes
e1c1753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 |
from dreamcoder.grammar import *
epsilon = 0.001
def instantiate(context, environment, tp):
bindings = {}
context, tp = tp.instantiate(context, bindings)
newEnvironment = {}
for i,ti in environment.items():
context,newEnvironment[i] = ti.instantiate(context, bindings)
return context, newEnvironment, tp
def unify(*environmentsAndTypes):
k = Context.EMPTY
e = {}
k,t = k.makeVariable()
for e_,t_ in environmentsAndTypes:
k, e_, t_ = instantiate(k, e_, t_)
k = k.unify(t,t_)
for i,ti in e_.items():
if i not in e: e[i] = ti
else: k = k.unify(e[i], ti)
return {i: ti.apply(k) for i,ti in e.items() }, t.apply(k)
class Union(Program):
def __init__(self, elements, canBeEmpty=False):
self.elements = frozenset(elements)
if not canBeEmpty: assert len(self.elements) > 1
@property
def isUnion(self): return True
def __eq__(self,o):
return isinstance(o,Union) and self.elements == o.elements
def __hash__(self): return hash(self.elements)
def __str__(self):
return "{%s}"%(", ".join(map(str,list(self.elements))))
def show(self, isFunction):
return str(self)
def __repr__(self): return str(self)
def __iter__(self): return iter(self.elements)
class VersionTable():
def __init__(self, typed=True, identity=True, factored=False):
self.factored = factored
self.identity = identity
self.typed = typed
self.debug = False
if self.debug:
print("WARNING: running version spaces in debug mode. Will be substantially slower.")
self.expressions = []
self.recursiveTable = []
self.substitutionTable = {}
self.expression2index = {}
self.maximumShift = []
# Table containing (minimum cost, set of minimum cost programs)
self.inhabitantTable = []
# Table containing (minimum cost, set of minimum cost programs NOT starting w/ abstraction)
self.functionInhabitantTable = []
self.superCache = {}
self.overlapTable = {}
self.universe = self.incorporate(Primitive("U",t0,None))
self.empty = self.incorporate(Union([], canBeEmpty=True))
def __len__(self): return len(self.expressions)
def clearOverlapTable(self):
self.overlapTable = {}
def visualize(self, j):
from graphviz import Digraph
g = Digraph()
visited = set()
def walk(i):
if i in visited: return
if i == self.universe:
g.node(str(i), 'universe')
elif i == self.empty:
g.node(str(i), 'nil')
else:
l = self.expressions[i]
if l.isIndex or l.isPrimitive or l.isInvented:
g.node(str(i), str(l))
elif l.isAbstraction:
g.node(str(i), "lambda")
walk(l.body)
g.edge(str(i), str(l.body))
elif l.isApplication:
g.node(str(i), "@")
walk(l.f)
walk(l.x)
g.edge(str(i), str(l.f), label='f')
g.edge(str(i), str(l.x), label='x')
elif l.isUnion:
g.node(str(i), "U")
for c in l:
walk(c)
g.edge(str(i), str(c))
else:
assert False
visited.add(i)
walk(j)
g.render(view=True)
def branchingFactor(self,j):
l = self.expressions[j]
if l.isApplication: return max(self.branchingFactor(l.f),
self.branchingFactor(l.x))
if l.isUnion: return max([len(l.elements)] + [self.branchingFactor(e) for e in l ])
if l.isAbstraction: return self.branchingFactor(l.body)
return 0
def intention(self,j, isFunction=False):
l = self.expressions[j]
if l.isIndex or l.isPrimitive or l.isInvented: return l
if l.isAbstraction: return Abstraction(self.intention(l.body))
if l.isApplication: return Application(self.intention(l.f),
self.intention(l.x))
if l.isUnion: return Union(self.intention(e)
for e in l )
assert False
def walk(self,j):
"""yields every subversion space of j"""
visited = set()
def r(n):
if n in visited: return
visited.add(n)
l = self.expressions[n]
yield l
if l.isApplication:
yield from r(l.f)
yield from r(l.x)
if l.isAbstraction:
yield from r(l.body)
if l.isUnion:
for e in l:
yield from r(e)
yield from r(j)
def incorporate(self,p):
#assert isinstance(p,Union)# or p.wellTyped()
if p.isIndex or p.isPrimitive or p.isInvented:
pass
elif p.isAbstraction:
p = Abstraction(self.incorporate(p.body))
elif p.isApplication:
p = Application(self.incorporate(p.f),
self.incorporate(p.x))
elif p.isUnion:
if len(p.elements) > 0:
p = Union([self.incorporate(e) for e in p ])
else: assert False
j = self._incorporate(p)
return j
def _incorporate(self,p):
if p in self.expression2index: return self.expression2index[p]
j = len(self.expressions)
self.expressions.append(p)
self.expression2index[p] = j
self.recursiveTable.append(None)
self.inhabitantTable.append(None)
self.functionInhabitantTable.append(None)
return j
def extract(self,j):
l = self.expressions[j]
if l.isAbstraction:
for b in self.extract(l.body):
yield Abstraction(b)
elif l.isApplication:
for f in self.extract(l.f):
for x in self.extract(l.x):
yield Application(f,x)
elif l.isIndex or l.isPrimitive or l.isInvented:
yield l
elif l.isUnion:
for e in l:
yield from self.extract(e)
else: assert False
def reachable(self, heads):
visited = set()
def visit(j):
if j in visited: return
visited.add(j)
l = self.expressions[j]
if l.isUnion:
for e in l:
visit(e)
elif l.isAbstraction: visit(l.body)
elif l.isApplication:
visit(l.f)
visit(l.x)
for h in heads:
visit(h)
return visited
def size(self,j):
l = self.expressions[j]
if l.isApplication:
return self.size(l.f) + self.size(l.x)
elif l.isAbstraction:
return self.size(l.body)
elif l.isUnion:
return sum(self.size(e) for e in l )
else:
return 1
def union(self,elements):
if self.universe in elements: return self.universe
_e = []
for e in elements:
if self.expressions[e].isUnion:
for j in self.expressions[e]:
_e.append(j)
elif e != self.empty:
_e.append(e)
elements = frozenset(_e)
if len(elements) == 0: return self.empty
if len(elements) == 1: return next(iter(elements))
return self._incorporate(Union(elements))
def apply(self,f,x):
if f == self.empty: return f
if x == self.empty: return x
return self._incorporate(Application(f,x))
def abstract(self,b):
if b == self.empty: return self.empty
return self._incorporate(Abstraction(b))
def index(self,i):
return self._incorporate(Index(i))
def intersection(self,a,b):
if a == self.empty or b == self.empty: return self.empty
if a == self.universe: return b
if b == self.universe: return a
if a == b: return a
x = self.expressions[a]
y = self.expressions[b]
if x.isAbstraction and y.isAbstraction:
return self.abstract(self.intersection(x.body,y.body))
if x.isApplication and y.isApplication:
return self.apply(self.intersection(x.f,y.f),
self.intersection(x.x,y.x))
if x.isUnion:
if y.isUnion:
return self.union([ self.intersection(x_,y_)
for x_ in x
for y_ in y ])
return self.union([ self.intersection(x_, b)
for x_ in x ])
if y.isUnion:
return self.union([ self.intersection(a, y_)
for y_ in y ])
return self.empty
def haveOverlap(self,a,b):
if a == self.empty or b == self.empty: return False
if a == self.universe: return True
if b == self.universe: return True
if a == b: return True
if a in self.overlapTable:
if b in self.overlapTable[a]:
return self.overlapTable[a][b]
else: self.overlapTable[a] = {}
x = self.expressions[a]
y = self.expressions[b]
if x.isAbstraction and y.isAbstraction:
overlap = self.haveOverlap(x.body,y.body)
elif x.isApplication and y.isApplication:
overlap = self.haveOverlap(x.f,y.f) and \
self.haveOverlap(x.x,y.x)
elif x.isUnion:
if y.isUnion:
overlap = any( self.haveOverlap(x_,y_)
for x_ in x
for y_ in y )
overlap = any( self.haveOverlap(x_, b)
for x_ in x )
elif y.isUnion:
overlap = any( self.haveOverlap(a, y_)
for y_ in y )
else:
overlap = False
self.overlapTable[a][b] = overlap
return overlap
def minimalInhabitants(self,j):
"""Returns (minimal size, set of singleton version spaces)"""
assert isinstance(j,int)
if self.inhabitantTable[j] is not None: return self.inhabitantTable[j]
e = self.expressions[j]
if e.isAbstraction:
cost, members = self.minimalInhabitants(e.body)
cost = cost + epsilon
members = {self.abstract(m) for m in members}
elif e.isApplication:
fc, fm = self.minimalFunctionInhabitants(e.f)
xc, xm = self.minimalInhabitants(e.x)
cost = fc + xc + epsilon
members = {self.apply(f_,x_)
for f_ in fm for x_ in xm }
elif e.isUnion:
children = [self.minimalInhabitants(z)
for z in e ]
cost = min(c for c,_ in children)
members = {zp
for c,z in children
if c == cost
for zp in z }
else:
assert e.isIndex or e.isInvented or e.isPrimitive
cost = 1
members = {j}
# if len(members) > 1:
# for m in members: break
# members = {m}
self.inhabitantTable[j] = (cost, members)
return cost, members
def minimalFunctionInhabitants(self,j):
"""Returns (minimal size, set of singleton version spaces)"""
assert isinstance(j,int)
if self.functionInhabitantTable[j] is not None: return self.functionInhabitantTable[j]
e = self.expressions[j]
if e.isAbstraction:
cost = POSITIVEINFINITY
members = set()
elif e.isApplication:
fc, fm = self.minimalFunctionInhabitants(e.f)
xc, xm = self.minimalInhabitants(e.x)
cost = fc + xc + epsilon
members = {self.apply(f_,x_)
for f_ in fm for x_ in xm }
elif e.isUnion:
children = [self.minimalFunctionInhabitants(z)
for z in e ]
cost = min(c for c,_ in children)
members = {zp
for c,z in children
if c == cost
for zp in z }
else:
assert e.isIndex or e.isInvented or e.isPrimitive
cost = 1
members = {j}
# if len(members) > 1:
# for m in members: break
# members = {m}
self.functionInhabitantTable[j] = (cost, members)
return cost, members
def shiftFree(self,j,n,c=0):
if n == 0: return j
l = self.expressions[j]
if l.isUnion:
return self.union([ self.shiftFree(e,n,c)
for e in l ])
if l.isApplication:
return self.apply(self.shiftFree(l.f,n,c),
self.shiftFree(l.x,n,c))
if l.isAbstraction:
return self.abstract(self.shiftFree(l.body,n,c+1))
if l.isIndex:
if l.i < c: return j
if l.i >= n + c: return self.index(l.i - n)
return self.empty
assert l.isPrimitive or l.isInvented
return j
def substitutions(self,j):
if self.typed:
for (v,_),b in self._substitutions(j,0).items():
yield v,b
else:
yield from self._substitutions(j,0).items()
def _substitutions(self,j,n):
if (j,n) in self.substitutionTable: return self.substitutionTable[(j,n)]
s = self.shiftFree(j,n)
if self.debug:
assert set(self.extract(s)) == set( e.shift(-n)
for e in self.extract(j)
if all( f >= n for f in e.freeVariables() )),\
"shiftFree_%d: %s"%(n,set(self.extract(s)))
if s == self.empty: m = {}
else:
if self.typed:
principalType = self.infer(s)
if principalType == self.bottom:
print(self.infer(j))
print(list(self.extract(j)))
print(list(self.extract(s)))
assert False
m = {(s, self.infer(s)[1].canonical()): self.index(n)}
else:
m = {s: self.index(n)}
l = self.expressions[j]
if l.isPrimitive or l.isInvented:
m[(self.universe,t0) if self.typed else self.universe] = j
elif l.isIndex:
m[(self.universe,t0) if self.typed else self.universe] = \
j if l.i < n else self.index(l.i + 1)
elif l.isAbstraction:
for v,b in self._substitutions(l.body, n + 1).items():
m[v] = self.abstract(b)
elif l.isApplication and not self.factored:
newMapping = {}
fm = self._substitutions(l.f,n)
xm = self._substitutions(l.x,n)
for v1,f in fm.items():
if self.typed: v1,nType1 = v1
for v2,x in xm.items():
if self.typed: v2,nType2 = v2
a = self.apply(f,x)
# See if the types that they assigned to $n are consistent
if self.typed:
if self.infer(a) == self.bottom: continue
try:
nType = canonicalUnification(nType1, nType2,
self.infer(a)[0].get(n,t0))
except UnificationFailure:
continue
v = self.intersection(v1,v2)
if v == self.empty: continue
if self.typed and self.infer(v) == self.bottom: continue
key = (v,nType) if self.typed else v
if key in newMapping:
newMapping[key].append(a)
else:
newMapping[key] = [a]
for v in newMapping:
newMapping[v] = self.union(newMapping[v])
newMapping.update(m)
m = newMapping
# print(f"substitutions: |{len(fm)}|x|{len(xm)}| = {len(m)}\t{len(m) <= len(fm)+len(xm)}")
elif l.isApplication and self.factored:
newMapping = {}
fm = self._substitutions(l.f,n)
xm = self._substitutions(l.x,n)
for v1,f in fm.items():
if self.typed: v1,nType1 = v1
for v2,x in xm.items():
if self.typed: v2,nType2 = v2
v = self.intersection(v1,v2)
if v == self.empty: continue
if v in newMapping:
newMapping[v] = ({f} | newMapping[v][0],
{x} | newMapping[v][1])
else:
newMapping[v] = ({f},{x})
for v,(fs,xs) in newMapping.items():
fs = self.union(list(fs))
xs = self.union(list(xs))
m[v] = self.apply(fs,xs)
# print(f"substitutions: |{len(fm)}|x|{len(xm)}| = {len(m)}\t{len(m) <= len(fm)+len(xm)}")
elif l.isUnion:
newMapping = {}
for e in l:
for v,b in self._substitutions(e,n).items():
if v in newMapping:
newMapping[v].append(b)
else:
newMapping[v] = [b]
for v in newMapping:
newMapping[v] = self.union(newMapping[v])
newMapping.update(m)
m = newMapping
else: assert False
self.substitutionTable[(j,n)] = m
return m
def inversion(self,j):
i = self.union([self.apply(self.abstract(b),v)
for v,b in self.substitutions(j)
if v != self.universe])
if self.debug and self.typed:
if not (self.infer(i) == self.infer(j)):
print("inversion produced space with a different type!")
print("the original type was",self.infer(j))
print("the type of the rewritten expressions is",self.infer(i))
print("the original extension was")
n = None
for e in self.extract(j):
print(e, e.infer())
# print(f"\t{e.betaNormalForm()} : {e.betaNormalForm().infer()}")
assert n is None or e.betaNormalForm() == n
n = e.betaNormalForm()
print("the rewritten extension is")
for e in self.extract(i):
print(e, e.infer())
# print(f"\t{e.betaNormalForm()} : {e.betaNormalForm().infer()}")
assert n is None or e.betaNormalForm() == n
assert self.infer(i) == self.infer(j)
assert False
return i
def recursiveInversion(self,j):
if self.recursiveTable[j] is not None: return self.recursiveTable[j]
l = self.expressions[j]
if l.isUnion:
return self.union([self.recursiveInversion(e) for e in l ])
t = [self.apply(self.abstract(b),v)
for v,b in self.substitutions(j)
if v != self.universe and (self.identity or b != self.index(0))]
if self.debug and self.typed:
ru = self.union(t)
if not (self.infer(ru) == self.infer(j)):
print("inversion produced space with a different type!")
print("the original type was",self.infer(j))
print("the type of the rewritten expressions is",self.infer(ru))
print("the original extension was")
n = None
for e in self.extract(j):
print(e, e.infer())
# print(f"\t{e.betaNormalForm()} : {e.betaNormalForm().infer()}")
assert n is None or e.betaNormalForm() == n
n = e.betaNormalForm()
print("the rewritten extension is")
for e in self.extract(ru):
print(e, e.infer())
# print(f"\t{e.betaNormalForm()} : {e.betaNormalForm().infer()}")
assert n is None or e.betaNormalForm() == n
assert self.infer(ru) == self.infer(j)
if l.isApplication:
t.append(self.apply(self.recursiveInversion(l.f),l.x))
t.append(self.apply(l.f,self.recursiveInversion(l.x)))
elif l.isAbstraction:
t.append(self.abstract(self.recursiveInversion(l.body)))
ru = self.union(t)
self.recursiveTable[j] = ru
return ru
def repeatedExpansion(self,j,n):
spaces = [j]
for _ in range(n):
spaces.append(self.recursiveInversion(spaces[-1]))
return spaces
def rewriteReachable(self,heads,n):
vertices = self.reachable(heads)
spaces = {v: self.repeatedExpansion(v,n)
for v in vertices }
return spaces
def properVersionSpace(self, j, n):
return self.union(self.repeatedExpansion(j, n))
def superVersionSpace(self, j, n):
"""Construct decorated tree and then merge version spaces with subtrees via union operator"""
if j in self.superCache: return self.superCache[j]
spaces = self.rewriteReachable({j}, n)
def superSpace(i):
assert i in spaces
e = self.expressions[i]
components = [i] + spaces[i]
if e.isIndex or e.isPrimitive or e.isInvented:
pass
elif e.isAbstraction:
components.append(self.abstract(superSpace(e.body)))
elif e.isApplication:
components.append(self.apply(superSpace(e.f), superSpace(e.x)))
elif e.isUnion: assert False
else: assert False
return self.union(components)
self.superCache[j] = superSpace(j)
return self.superCache[j]
def loadEquivalences(self, g, spaces):
versionClasses = [None]*len(self.expressions)
def extract(j):
if versionClasses[j] is not None:
return versionClasses[j]
l = self.expressions[j]
if l.isAbstraction:
ks = g.setOfClasses(g.abstractClass(b)
for b in extract(l.body))
elif l.isApplication:
fs = extract(l.f)
xs = extract(l.x)
ks = g.setOfClasses(g.applyClass(f,x)
for x in xs for f in fs )
elif l.isUnion:
ks = g.setOfClasses(e for u in l for e in extract(u))
else:
ks = g.setOfClasses({g.incorporate(l)})
versionClasses[j] = ks
return ks
N = len(next(iter(spaces.values())))
vertices = list(sorted(spaces.keys(), key=lambda v: self.size(v)))
# maps from a vertex to a map from types to classes
# the idea is to only enforceable equivalence between terms of the same type
typedClassesOfVertex = {v: {} for v in vertices }
for n in range(N):
# print(f"Processing rewrites {n} steps away from original expressions...")
for v in vertices:
expressions = list(self.extract(v))
assert len(expressions) == 1
expression = expressions[0]
k = g.incorporate(expression)
if k is None: continue
t0 = g.typeOfClass[k]
if t0 not in typedClassesOfVertex[v]:
typedClassesOfVertex[v][t0] = k
extracted = list(extract(spaces[v][n]))
for e in extracted:
t = g.typeOfClass[e]
if t in typedClassesOfVertex[v]:
g.makeEquivalent(typedClassesOfVertex[v][t],e)
else:
typedClassesOfVertex[v][e] = e
def bestInventions(self, versions, bs=25):
"""versions: [[version index]]"""
"""bs: beam size"""
"""returns: list of (indices to) candidates"""
import gc
def nontrivial(proposal):
primitives = 0
collisions = 0
indices = set()
for d, tree in proposal.walk():
if tree.isPrimitive or tree.isInvented: primitives += 1
elif tree.isIndex:
i = tree.i - d
if i in indices: collisions += 1
indices.add(i)
return primitives > 1 or (primitives == 1 and collisions > 0)
with timing("calculated candidates from version space"):
candidates = [{j
for k in self.reachable(hs)
for _,js in [self.minimalInhabitants(k), self.minimalFunctionInhabitants(k)]
for j in js }
for hs in versions]
from collections import Counter
candidates = Counter(k for ks in candidates for k in ks)
candidates = {k for k,f in candidates.items() if f >= 2 and nontrivial(next(self.extract(k))) }
# candidates = [k for k in candidates if next(self.extract(k)).isBetaLong()]
eprint(len(candidates),"candidates from version space")
# Calculate the number of free variables for each candidate invention
# This is important because, if a candidate has free variables,
# then whenever we use it we will have to apply it to those free variables;
# thus using a candidate with free variables is more expensive
candidateCost = {k: len(set(next(self.extract(k)).freeVariables())) + 1
for k in candidates }
inhabitTable = self.inhabitantTable
functionTable = self.functionInhabitantTable
class B():
def __init__(self, j):
cost, inhabitants = inhabitTable[j]
functionCost, functionInhabitants = functionTable[j]
self.relativeCost = {inhabitant: candidateCost[inhabitant]
for inhabitant in inhabitants
if inhabitant in candidates}
self.relativeFunctionCost = {inhabitant: candidateCost[inhabitant]
# INTENTIONALLY, do not use function inhabitants
for inhabitant in inhabitants
if inhabitant in candidates}
self.defaultCost = cost
self.defaultFunctionCost = functionCost
@property
def domain(self):
return set(self.relativeCost.keys())
@property
def functionDomain(self):
return set(self.relativeFunctionCost.keys())
def restrict(self):
if len(self.relativeCost) > bs:
self.relativeCost = dict(sorted(self.relativeCost.items(),
key=lambda rk: rk[1])[:bs])
if len(self.relativeFunctionCost) > bs:
self.relativeFunctionCost = dict(sorted(self.relativeFunctionCost.items(),
key=lambda rk: rk[1])[:bs])
def getCost(self, given):
return self.relativeCost.get(given, self.defaultCost)
def getFunctionCost(self, given):
return self.relativeFunctionCost.get(given, self.defaultFunctionCost)
def relax(self, given, cost):
self.relativeCost[given] = min(cost,
self.getCost(given))
def relaxFunction(self, given, cost):
self.relativeFunctionCost[given] = min(cost,
self.getFunctionCost(given))
def unobject(self):
return {'relativeCost': self.relativeCost, 'defaultCost': self.defaultCost,
'relativeFunctionCost': self.relativeFunctionCost, 'defaultFunctionCost': self.defaultFunctionCost}
beamTable = [None]*len(self.expressions)
def costs(j):
if beamTable[j] is not None:
return beamTable[j]
beamTable[j] = B(j)
e = self.expressions[j]
if e.isIndex or e.isPrimitive or e.isInvented:
pass
elif e.isAbstraction:
b = costs(e.body)
for i,c in b.relativeCost.items():
beamTable[j].relax(i, c + epsilon)
elif e.isApplication:
f = costs(e.f)
x = costs(e.x)
for i in f.functionDomain | x.domain:
beamTable[j].relax(i, f.getFunctionCost(i) + x.getCost(i) + epsilon)
beamTable[j].relaxFunction(i, f.getFunctionCost(i) + x.getCost(i) + epsilon)
elif e.isUnion:
for z in e:
cz = costs(z)
for i,c in cz.relativeCost.items(): beamTable[j].relax(i, c)
for i,c in cz.relativeFunctionCost.items(): beamTable[j].relaxFunction(i, c)
else: assert False
beamTable[j].restrict()
return beamTable[j]
with timing("beamed version spaces"):
beams = parallelMap(numberOfCPUs(),
lambda hs: [ costs(h).unobject() for h in hs ],
versions,
memorySensitive=True,
chunksize=1,
maxtasksperchild=1)
# This can get pretty memory intensive - clean up the garbage
beamTable = None
gc.collect()
candidates = {d
for _bs in beams
for b in _bs
for d in b['relativeCost'].keys() }
def score(candidate):
return sum(min(min(b['relativeCost'].get(candidate, b['defaultCost']),
b['relativeFunctionCost'].get(candidate, b['defaultFunctionCost']))
for b in _bs )
for _bs in beams )
candidates = sorted(candidates, key=score)
return candidates
def rewriteWithInvention(self, i, js):
"""Rewrites list of indices in beta long form using invention"""
self.clearOverlapTable()
class RW():
"""rewritten cost/expression either as a function or argument"""
def __init__(self, f,fc,a,ac):
assert not (fc < ac)
self.f, self.fc, self.a, self.ac = f,fc,a,ac
_i = list(self.extract(i))
assert len(_i) == 1
_i = _i[0]
table = {}
def rewrite(j):
if j in table: return table[j]
e = self.expressions[j]
if self.haveOverlap(i, j): r = RW(fc=1,ac=1,
f=_i,a=_i)
elif e.isPrimitive or e.isInvented or e.isIndex:
r = RW(fc=1,ac=1,
f=e,a=e)
elif e.isApplication:
f = rewrite(e.f)
x = rewrite(e.x)
cost = f.fc + x.ac + epsilon
ep = Application(f.f, x.a) if cost < POSITIVEINFINITY else None
r = RW(fc=cost, ac=cost,
f=ep, a=ep)
elif e.isAbstraction:
b = rewrite(e.body)
cost = b.ac + epsilon
ep = Abstraction(b.a) if cost < POSITIVEINFINITY else None
r = RW(f=None, fc=POSITIVEINFINITY,
a=ep, ac=cost)
elif e.isUnion:
children = [rewrite(z) for z in e ]
f,fc = min(( (child.f, child.fc) for child in children ),
key=cindex(1))
a,ac = min(( (child.a, child.ac) for child in children ),
key=cindex(1))
r = RW(f=f,fc=fc,
a=a,ac=ac)
else: assert False
table[j] = r
return r
js = [ rewrite(j).a for j in js ]
self.clearOverlapTable()
return js
def addInventionToGrammar(self, candidate, g0, frontiers,
pseudoCounts=1.):
candidateSource = next(self.extract(candidate))
v = RewriteWithInventionVisitor(candidateSource)
invention = v.invention
rewriteMapping = list({e.program
for f in frontiers
for e in f })
spaces = [self.superCache[self.incorporate(program)]
for program in rewriteMapping ]
rewriteMapping = dict(zip(rewriteMapping,
self.rewriteWithInvention(candidate, spaces)))
def tryRewrite(program, request=None):
rw = v.execute(rewriteMapping[program], request=request)
# print(f"Rewriting {program} ({rewriteMapping[program]}) : rw={rw}")
# print("slow-motion:")
# try:
# i = rewriteMapping[program].visit(v)
# print(f"\ti={i}")
# l = EtaLongVisitor().execute(i)
# print(f"\tl={l}")
# except Exception as e: print(e)
return rw or program
frontiers = [Frontier([FrontierEntry(program=tryRewrite(e.program, request=f.task.request),
logLikelihood=e.logLikelihood,
logPrior=0.)
for e in f ],
f.task)
for f in frontiers ]
# print(invention)
# for f in frontiers: print(f.entries[0].program)
# print()
# print()
g = Grammar.uniform([invention] + g0.primitives, continuationType=g0.continuationType).\
insideOutside(frontiers,
pseudoCounts=pseudoCounts)
frontiers = [g.rescoreFrontier(f) for f in frontiers]
return g, frontiers
class CloseInventionVisitor():
"""normalize free variables - e.g., if $1 & $3 occur free then rename them to $0, $1
then wrap in enough lambdas so that there are no free variables and finally wrap in invention"""
def __init__(self, p):
self.p = p
freeVariables = list(sorted(set(p.freeVariables())))
self.mapping = {fv: j for j,fv in enumerate(freeVariables) }
def index(self, e, d):
if e.i - d in self.mapping:
return Index(self.mapping[e.i - d] + d)
return e
def abstraction(self, e, d):
return Abstraction(e.body.visit(self, d + 1))
def application(self, e, d):
return Application(e.f.visit(self, d),
e.x.visit(self, d))
def primitive(self, e, d): return e
def invented(self, e, d): return e
def execute(self):
normed = self.p.visit(self, 0)
closed = normed
for _ in range(len(self.mapping)):
closed = Abstraction(closed)
return Invented(closed)
class RewriteWithInventionVisitor():
def __init__(self, p):
v = CloseInventionVisitor(p)
self.original = p
self.mapping = { j: fv for fv, j in v.mapping.items() }
self.invention = v.execute()
self.appliedInvention = self.invention
for j in range(len(self.mapping) - 1, -1, -1):
self.appliedInvention = Application(self.appliedInvention, Index(self.mapping[j]))
def tryRewrite(self, e):
if e == self.original:
return self.appliedInvention
return None
def index(self, e): return e
def primitive(self, e): return e
def invented(self, e): return e
def abstraction(self, e):
return self.tryRewrite(e) or Abstraction(e.body.visit(self))
def application(self, e):
return self.tryRewrite(e) or Application(e.f.visit(self),
e.x.visit(self))
def execute(self, e, request=None):
try:
i = e.visit(self)
l = EtaLongVisitor(request=request).execute(i)
return l
except (UnificationFailure, EtaExpandFailure):
return None
def induceGrammar_Beta(g0, frontiers, _=None,
pseudoCounts=1.,
a=3,
aic=1.,
topK=2,
topI=50,
structurePenalty=1.,
CPUs=1):
"""grammar induction using only version spaces"""
from dreamcoder.fragmentUtilities import primitiveSize
import gc
originalFrontiers = frontiers
frontiers = [frontier for frontier in frontiers if not frontier.empty]
eprint("Inducing a grammar from", len(frontiers), "frontiers")
arity = a
def restrictFrontiers():
return parallelMap(1,#CPUs,
lambda f: g0.rescoreFrontier(f).topK(topK),
frontiers,
memorySensitive=True,
chunksize=1,
maxtasksperchild=1)
restrictedFrontiers = restrictFrontiers()
def objective(g, fs):
ll = sum(g.frontierMDL(f) for f in fs )
sp = structurePenalty * sum(primitiveSize(p) for p in g.primitives)
return ll - sp - aic*len(g.productions)
v = None
def scoreCandidate(candidate, currentFrontiers, currentGrammar):
try:
newGrammar, newFrontiers = v.addInventionToGrammar(candidate, currentGrammar, currentFrontiers,
pseudoCounts=pseudoCounts)
except InferenceFailure:
# And this can occur if the candidate is not well typed:
# it is expected that this can occur;
# in practice, it is more efficient to filter out the ill typed terms,
# then it is to construct the version spaces so that they only contain well typed terms.
return NEGATIVEINFINITY
o = objective(newGrammar, newFrontiers)
#eprint("+", end='')
eprint(o,'\t',newGrammar.primitives[0],':',newGrammar.primitives[0].tp)
# eprint(next(v.extract(candidate)))
# for f in newFrontiers:
# for e in f:
# eprint(e.program)
return o
with timing("Estimated initial grammar production probabilities"):
g0 = g0.insideOutside(restrictedFrontiers, pseudoCounts)
oldScore = objective(g0, restrictedFrontiers)
eprint("Starting grammar induction score",oldScore)
while True:
v = VersionTable(typed=False, identity=False)
with timing("constructed %d-step version spaces"%arity):
versions = [[v.superVersionSpace(v.incorporate(e.program), arity) for e in f]
for f in restrictedFrontiers ]
eprint("Enumerated %d distinct version spaces"%len(v.expressions))
# Bigger beam because I feel like it
candidates = v.bestInventions(versions, bs=3*topI)[:topI]
eprint("Only considering the top %d candidates"%len(candidates))
# Clean caches that are no longer needed
v.recursiveTable = [None]*len(v)
v.inhabitantTable = [None]*len(v)
v.functionInhabitantTable = [None]*len(v)
v.substitutionTable = {}
gc.collect()
with timing("scored the candidate inventions"):
scoredCandidates = parallelMap(CPUs,
lambda candidate: \
(candidate, scoreCandidate(candidate, restrictedFrontiers, g0)),
candidates,
memorySensitive=True,
chunksize=1,
maxtasksperchild=1)
if len(scoredCandidates) > 0:
bestNew, bestScore = max(scoredCandidates, key=lambda sc: sc[1])
if len(scoredCandidates) == 0 or bestScore < oldScore:
eprint("No improvement possible.")
# eprint("Runner-up:")
# eprint(next(v.extract(bestNew)))
# Return all of the frontiers, which have now been rewritten to use the
# new fragments
frontiers = {f.task: f for f in frontiers}
frontiers = [frontiers.get(f.task, f)
for f in originalFrontiers]
return g0, frontiers
# This is subtle: at this point we have not calculated
# versions bases for programs outside the restricted
# frontiers; but here we are rewriting the entire frontier in
# terms of the new primitive. So we have to recalculate
# version spaces for everything.
with timing("constructed versions bases for entire frontiers"):
for f in frontiers:
for e in f:
v.superVersionSpace(v.incorporate(e.program), arity)
newGrammar, newFrontiers = v.addInventionToGrammar(bestNew, g0, frontiers,
pseudoCounts=pseudoCounts)
eprint("Improved score to", bestScore, "(dS =", bestScore-oldScore, ") w/ invention",newGrammar.primitives[0],":",newGrammar.primitives[0].infer())
oldScore = bestScore
for f in newFrontiers:
eprint(f.summarizeFull())
g0, frontiers = newGrammar, newFrontiers
restrictedFrontiers = restrictFrontiers()
def testTyping(p):
v = VersionTable()
j = v.incorporate(p)
wellTyped = set(v.extract(v.inversion(j)))
print(len(wellTyped))
v = VersionTable(typed=False)
j = v.incorporate(p)
arbitrary = set(v.extract(v.recursiveInversion(v.recursiveInversion(v.recursiveInversion(j)))))
print(len(arbitrary))
assert wellTyped <= arbitrary
assert wellTyped == {e
for e in arbitrary if e.wellTyped() }
assert all( e.wellTyped() for e in wellTyped )
import sys
sys.exit()
def testSharing(projection=2):
source = "(+ 1 1)"
N = 4 # maximum number of refactorings
L = 6 # maximum size of expression
# def literalSize(v,j):
# hs = []
# vp = VersionTable(typed=False)
# for i in v.extract(j):
# hs.append(vp.incorporate(i))
# return len(set(vp.reachable(hs)))
# smart = {}
# dumb = {}
# for l in range(L):
# for n in range(N):
# v = VersionTable(typed=False)
# j = v.properVersionSpace(v.incorporate(Program.parse(source)),n)
# smart[(l,n)] = len(v.reachable({j}))
# dumb[(l,n)] = literalSize(v,j)
# print(f"vs l={l}\tn={n} sz={smart[(l,n)]}")
# print(f"db l={l}\tn={n} sz={dumb[(l,n)]}")
# # increase the size of the expression
# source = "(+ 1 %s)"%source
# print("Increased size to",l + 1)
import numpy as np
distinct_programs = np.zeros((L,N))
version_size = np.zeros((L,N))
program_memory = np.zeros((L,N))
version_size[0,1] = 24
distinct_programs[0,1] = 8
program_memory[0,1] = 28
version_size[0,2] = 155
distinct_programs[0,2] = 63
program_memory[0,2] = 201
version_size[0,3] = 1126
distinct_programs[0,3] = 534
program_memory[0,3] = 1593
version_size[1,1] = 48
distinct_programs[1,1] = 24
program_memory[1,1] = 78
version_size[1,2] = 526
distinct_programs[1,2] = 457
program_memory[1,2] = 1467
version_size[1,3] = 6639
distinct_programs[1,3] = 8146
program_memory[1,3] = 26458
version_size[2,1] = 74
distinct_programs[2,1] = 57
program_memory[2,1] = 193
version_size[2,2] = 1095
distinct_programs[2,2] = 2234
program_memory[2,2] = 7616
version_size[2,3] = 19633
distinct_programs[2,3] = 74571
program_memory[2,3] = 260865
version_size[3,1] = 101
distinct_programs[3,1] = 123
program_memory[3,1] = 438
version_size[3,2] = 1751
distinct_programs[3,2] = 9209
program_memory[3,2] = 32931
version_size[3,3] = 38781
distinct_programs[3,3] = 540315
program_memory[3,3] = 1984171
version_size[4,1] = 129
distinct_programs[4,1] = 254
program_memory[4,1] = 942
version_size[4,2] = 2488
distinct_programs[4,2] = 35011
program_memory[4,2] = 129513
version_size[4,3] = 63271
distinct_programs[4,3] = 3477046
program_memory[4,3] = 13179440
version_size[5,1] = 158
distinct_programs[5,1] = 514
program_memory[5,1] = 1962
version_size[5,2] = 3308
distinct_programs[5,2] = 128319
program_memory[5,2] = 485862
version_size[5,3] = 93400
distinct_programs[5,3] = 21042591
program_memory[5,3] = 81433633
import matplotlib.pyplot as plot
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
if projection == 3:
f = plot.figure()
a = f.add_subplot(111, projection='3d')
X = np.arange(0,N)
Y = np.arange(0,L)
X,Y = np.meshgrid(X,Y)
Z = np.zeros((L,N))
for l in range(L):
for n in range(N):
Z[l,n] = smart[(l,n)]
a.plot_surface(X,
Y,
np.log10(Z),
color='blue',
alpha=0.3)
for l in range(L):
for n in range(N):
Z[l,n] = dumb[(l,n)]
a.plot_surface(X,
Y,
np.log10(Z),
color='red',
alpha=0.3)
else:
plot.figure(figsize=(3.5,3))
plot.tight_layout()
logarithmic = False
if logarithmic: P = plot.semilogy
else: P = plot.plot
for n in range(1, 2):
xs = np.array(range(L))*2 + 3
P(xs,
[version_size[l,n] for l in range(L) ],
'purple',
label=None if n > 1 else 'version space')
P(xs,
[program_memory[l,n] for l in range(L) ],
'green',
label=None if n > 1 else 'no version space')
if n > 1: dy = 1
if n == 1 and logarithmic: dy = 0.6
if n == 1 and not logarithmic: dy = 1
# plot.text(xs[-1], dy*version_size[L - 1,n], "n=%d"%n)
# plot.text(xs[-1], dy*program_memory[L - 1,n], "n=%d"%n)
plot.legend()
plot.xlabel('Size of program being refactored')
plot.ylabel('Size of VS (purple) or progs (green)')
plot.xticks(list(xs) + [xs[-1] + 2],
[ str(x) if j == 0 or j == L - 1 else ''
for j,x in enumerate(list(xs) + [xs[-1] + 2])])
# if not logarithmic:
# plot.ylim([0,100000])
plot.savefig('/tmp/vs.eps')
assert False
if __name__ == "__main__":
from dreamcoder.domains.arithmetic.arithmeticPrimitives import *
from dreamcoder.domains.list.listPrimitives import *
from dreamcoder.fragmentGrammar import *
bootstrapTarget_extra()
McCarthyPrimitives()
testSharing()
# p = Program.parse("(#(lambda (lambda (lambda (fold $0 empty ($1 $2))))) cons (lambda (lambda (lambda ($2 (+ (+ 5 5) (+ $1 $1)) $0)))))")
# print(EtaLongVisitor().execute(p))
# BOOTSTRAP
programs = [# "(lambda (fix1 $0 (lambda (lambda (if (empty? $0) 0 (+ ($1 (cdr $0)) 1))))))",
# "(lambda (fix1 $0 (lambda (lambda (if (empty? $0) 0 (+ ($1 (cdr $0)) 1))))))",
# "(lambda (+ $0 1))",
# "(lambda (+ (car $0) 1))",
# "(lambda (+ $0 (+ 1 1)))",
# "(lambda (- $0 1))",
# "(lambda (- $0 (+ 1 1)))",
# "(lambda (- (car $0) 1))",
("(lambda (fix1 $0 (lambda (lambda (if (eq? 0 $0) empty (cons (- 0 $0) ($1 (+ 1 $0))))))))",None),
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) empty (cons (cdr $0) ($1 (cdr $0))))))))",arrow(tlist(tint),tlist(tlist(tint)))),
# drop the last element
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? (cdr $0)) empty (cons (car $0) ($1 (cdr $0))))))))",arrow(tlist(tint),tlist(tint))),
# take in till 1
# ("(lambda (fix1 $0 (lambda (lambda (if (eq? (car $0) 1) empty (cons (car $0) ($1 (cdr $0))))))))",arrow(tlist(tint),tlist(tint))),
# "(lambda (lambda (fix2 $1 $0 (lambda (lambda (lambda (if (eq? $1 0) (car $0) ($2 (- $1 1) (cdr $0)))))))))",
# "(lambda (lambda (fix2 $1 $0 (lambda (lambda (lambda (if (eq? $1 0) (car $0) ($2 (- $1 1) (cdr $0)))))))))",
("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) 0 (+ (car $0) ($1 (cdr $0))))))))",None),
("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) 1 (- (car $0) ($1 (cdr $0))))))))",None),
("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) (cons 0 empty) (cons (car $0) ($1 (cdr $0))))))))",None),
("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) (empty? empty) (if (car $0) ($1 (cdr $0)) (eq? 1 0)))))))",None),
# "(lambda (lambda (fix2 $1 $0 (lambda (lambda (lambda (if (empty? $1) $0 (cons (car $1) ($2 (cdr $1) $0)))))))))",
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) empty (cons (+ (car $0) (car $0)) ($1 (cdr $0))))))))",None),
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) empty (cons (+ (car $0) 1) ($1 (cdr $0))))))))",None),
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) empty (cons (- (car $0) 1) ($1 (cdr $0))))))))",None),
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) empty (cons (cons (car $0) empty) ($1 (cdr $0))))))))",arrow(tlist(tint),tlist(tlist(tint)))),
# ("(lambda (fix1 $0 (lambda (lambda (if (empty? $0) empty (cons (- 0 (car $0)) ($1 (cdr $0))))))))",None)
]
programs = [(Program.parse(p),t) for p,t in programs ]
N=3
primitives = McCarthyPrimitives()
# for p, _ in programs:
# for _, s in p.walk():
# if s.isPrimitive:
# primitives.add(s)
g0 = Grammar.uniform(list(primitives))
print(g0)
# with timing("RUST test"):
# g = induceGrammar(g0, [Frontier.dummy(p, tp=tp) for p, tp in programs],
# CPUs=1,
# a=N,
# backend="vs")
# eprint(g)
# with open('vs.pickle','rb') as handle:
# a,kw = pickle.load(handle)
# induceGrammar_Beta(*a,**kw)
with timing("induced DSL"):
induceGrammar_Beta(g0, [Frontier.dummy(p, tp=tp) for p, tp in programs],
CPUs=1,
a=N,
structurePenalty=0.)
# if __name__ == "__main__":
# import argparse
# parser = argparse.ArgumentParser(description = "Version-space based compression")
# parser.add_argument("--CPUs", type=int, default=1)
# parser.add_argument("--arity", type=int, default=3)
# parser.add_argument("--bs", type=int, default=25,
# help="beam size")
# parser.add_argument("--topK", type=int, default=2)
# parser.add_argument("--topI", type=int, default=None,
# help="defaults to beam size")
# parser.add_argument("--pseudoCounts",
# type=float,
# default=1.)
# parser.add_argument("--structurePenalty",
# type=float, default=1.)
# arguments = parser.parse_args()
|