--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - squad model-index: - name: FN_JLL-Hackathon-Fine-Tuned_QA-ALBERT-SQuAD results: [] --- # FN_JLL-Hackathon-Fine-Tuned_QA-ALBERT-SQuAD This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 25 | 2.4216 | | No log | 2.0 | 50 | 1.5827 | | No log | 3.0 | 75 | 1.3848 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3