File size: 2,199 Bytes
bb39318 ab114ee 11038c0 dc74dda db69141 259f714 e1fca34 d446987 bb39318 17b2af5 439443f 1477bd2 439443f 553d127 f962e50 c5983e7 ab114ee 94e9bb0 ab114ee 7d8f63e ab114ee 96f138d ab114ee 96f138d ab114ee 11038c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: creativeml-openrail-m
tags:
- stable-diffusion
- prompt-generator
- distilgpt2
datasets:
- FredZhang7/krea-ai-prompts
- Gustavosta/Stable-Diffusion-Prompts
- bartman081523/stable-diffusion-discord-prompts
widget:
- text: "amazing"
- text: "a photo of"
- text: "a sci-fi"
- text: "a portrait of"
- text: "a person standing"
- text: "a boy watching"
---
# DistilGPT2 Stable Diffusion Model Card
<a href="https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion-v2"> <font size="10"> <bold> Version 2 is here! </bold> </font> </a>
DistilGPT2 Stable Diffusion is a text generation model used to generate creative and coherent prompts for text-to-image models, given any text.
This model was finetuned on 2.03 million descriptive stable diffusion prompts from [Stable Diffusion discord](https://huggingface.co/datasets/bartman081523/stable-diffusion-discord-prompts), [Lexica.art](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts), and (my hand-picked) [Krea.ai](https://huggingface.co/datasets/FredZhang7/krea-ai-prompts). I filtered the hand-picked prompts based on the output results from Stable Diffusion v1.4.
Compared to other prompt generation models using GPT2, this one runs with 50% faster forwardpropagation and 40% less disk space & RAM.
### PyTorch
```bash
pip install --upgrade transformers
```
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# load the pretrained tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
tokenizer.max_len = 512
# load the fine-tuned model
model = GPT2LMHeadModel.from_pretrained('FredZhang7/distilgpt2-stable-diffusion')
# generate text using fine-tuned model
from transformers import pipeline
nlp = pipeline('text-generation', model=model, tokenizer=tokenizer)
ins = "a beautiful city"
# generate 10 samples
outs = nlp(ins, max_length=80, num_return_sequences=10)
# print the 10 samples
for i in range(len(outs)):
outs[i] = str(outs[i]['generated_text']).replace(' ', '')
print('\033[96m' + ins + '\033[0m')
print('\033[93m' + '\n\n'.join(outs) + '\033[0m')
```
Example Output:
![Example Output](./prompt-examples.png) |