File size: 9,706 Bytes
9e4a5ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from typing import List
from queue import Queue
import torch
from PIL import Image
from copy import deepcopy
import requests, os
IMAGE_TOKEN_INDEX=-200
blacklist = ['<image>', '<s>', '</s>']
max_num_images = 3 # phi has a context length limit of 2048 and each image occupies 576 tokens.
def input_moderation(texts: list[list[str]]):
# perform input moderation on each message
for text_pair in texts:
# in-place operation
for b in blacklist:
text_pair[0] = text_pair[0].replace(b, '')
if text_pair[1] is not None:
text_pair[1] = text_pair[1].replace(b, '')
return texts
def insert_image_placeholder(t, num_images, placeholder='<image>', sep='\n'):
for _ in range(num_images):
t = f"{placeholder}{sep}" + t
return t
def get_conv(texts):
ret = []
for conv in texts:
ret.append({'from': 'human', 'value': conv[0]})
ret.append({'from': 'gpt', 'value': conv[1]}) # this is None for the last one
return ret
# copied from llava
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk, add_special_tokens=False).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def preprocess(tokenizer, data: list, return_tensors='pt'):
'''
[
{
'from': 'human',
'value': xxx,
},
{
'from': 'gpt',
'value': xxx
}
]
'''
# needs update
if not isinstance(data, list):
raise ValueError('must be a list')
# this is per model (tokenizer)
return preprocess_allava(tokenizer, data, return_tensors=return_tensors)
def preprocess_vicuna_v1(self, convs: list, return_tensors) -> list: # tokenize and concat the coversations
input_ids = None
for ind, conv in enumerate(convs):
if ind % 2 == 0: # human
h = conv['value'].strip()
h = f"USER: {h} "
cur_input_ids = self.tokenizer_image_token(prompt=h, return_tensors=return_tensors)
if input_ids is None:
input_ids = cur_input_ids
else:
input_ids = torch.cat([input_ids, cur_input_ids])
else: # gpt
g = conv['value']
if g is not None:
cur_input_ids = self.tokenizer(f"ASSISTANT: {g}</s>", add_special_tokens= False, max_length=self.maxlen, truncation=True, return_tensors='pt').input_ids[0]
input_ids = torch.cat([input_ids, cur_input_ids])
else:
cur_input_ids = self.tokenizer(f"ASSISTANT:", add_special_tokens= False, max_length=self.maxlen, truncation=True, return_tensors='pt').input_ids[0]
input_ids = torch.cat([input_ids, cur_input_ids])
return input_ids
def preprocess_allava(tokenizer, convs: list, return_tensors) -> list: # tokenize and concat the coversations
input_ids = None
for ind, conv in enumerate(convs):
if ind % 2 == 0: # human
h = conv['value'].strip()
h = f"[INST] {h} [/INST] "
cur_input_ids = tokenizer_image_token(prompt=h, tokenizer=tokenizer, return_tensors=return_tensors)
if input_ids is None:
input_ids = cur_input_ids
else:
input_ids = torch.cat([input_ids, cur_input_ids])
else: # gpt
g = conv['value']
if g is not None:
cur_input_ids = tokenizer(f"{g}{tokenizer.eos_token}", add_special_tokens= False, truncation=True, return_tensors='pt').input_ids[0]
input_ids = torch.cat([input_ids, cur_input_ids])
return input_ids
# copied from llava
def get_image_tensors(processor, images, device):
list_image_tensors = []
crop_size = processor.crop_size
for fp in images:
if fp is None: # None is used as a placeholder
list_image_tensors.append(torch.zeros(3, crop_size['height'], crop_size['width']).to(device))
continue
elif isinstance(fp, str):
image = Image.open(fp).convert('RGB')
elif isinstance(fp, Image.Image):
image = fp # already an image
else:
raise TypeError(f'Unsupported type {type(fp)}')
# this is the way of preprocessing images we used in training, so we impose it here
if True:
# self.data_args.image_aspect_ratio == 'pad'
def expand2square(pil_img, background_color):
width, height = pil_img.size
if pil_img.mode == 'L':
pil_img = pil_img.convert('RGB')
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
else:
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] # a tensor
list_image_tensors.append(image.to(device))
# list_image_tensors.append(image)
return list_image_tensors
def build_allava_input(tokenizer, processor, texts, images, history=None, return_history=False, device='cuda'):
'''
texts: [[]]
'''
############################
# 1. preprocess texts
############################
if isinstance(texts, str):
texts = [[texts, None]]
else:
assert isinstance(texts, list) and isinstance(texts[0], list) , 'texts must be a list of list'
if history is not None:
texts = history + texts # concat them together
texts = input_moderation(texts)
############################
# 2. preprocess images
############################
if isinstance(images, str) or isinstance(images, Image.Image):
images = [images]
valid_images = []
if images is None:
images = [None]
for img in images:
try:
if os.path.exists(img): # make sure that the path exists
img = Image.open(img).convert('RGB')
else: # else it must be a URL
img = Image.open(requests.get(img, stream=True).raw)
valid_images.append(img)
except:
continue
images = valid_images
if images == []:
images = [None]
assert len(images) < max_num_images, f'Currently at most {max_num_images} images are supported'
############################
# 3. collate conv
############################
history = deepcopy(texts) # history is the texts without <image> placeholders
# insert <image>
image_place_holder_inserted = insert_image_placeholder(texts[0][0], len(images) if None not in images else 0) # only insert the placeholders for user input at the 1st round
texts[0][0] = image_place_holder_inserted
# collate strings into conv
conv = get_conv(texts)
# make input ids
input_ids = preprocess(tokenizer, conv, return_tensors='pt').unsqueeze(0).to(device)
list_image_tensors = get_image_tensors(processor, images, device)
image_tensors = torch.stack(list_image_tensors)
try:
dtype = torch.bfloat16
# if your hardware does not support bf16, the following line raises an error
torch.tensor(1, dtype=dtype).cuda()
except:
# default using fp16
dtype = torch.float16
if return_history:
return input_ids, image_tensors, history
return input_ids, image_tensors, None
class TextIterStreamer:
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
self.tokenizer = tokenizer
self.skip_prompt = skip_prompt
self.skip_special_tokens = skip_special_tokens
self.tokens = []
self.text_queue = Queue()
self.next_tokens_are_prompt = True
def put(self, value):
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
else:
if len(value.shape) > 1:
value = value[0]
self.tokens.extend(value.tolist())
self.text_queue.put(
self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
def end(self):
self.text_queue.put(None)
def __iter__(self):
return self
def __next__(self):
value = self.text_queue.get()
if value is None:
raise StopIteration()
else:
return value
|