|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoModel, PretrainedConfig |
|
|
|
from transformers.modeling_utils import cached_file, CONFIG_NAME, extract_commit_hash, is_peft_available, find_adapter_config_file, json, os |
|
from transformers.models.auto.auto_factory import _BaseAutoModelClass, _get_model_class |
|
from transformers.dynamic_module_utils import resolve_trust_remote_code, get_class_from_dynamic_module |
|
|
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
import pdb |
|
|
|
|
|
import sys |
|
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
from .modeling_stablelm_epoch import StableLMEpochForCausalLM, StableLMEpochModel, StableLMEpochConfig |
|
from .generation_utils import build_allava_input |
|
|
|
|
|
|
|
|
|
class LlavaStableLM_1_6bConfig(StableLMEpochConfig): |
|
model_type = "llava_stablelm_1_6b" |
|
|
|
|
|
class LlavaStableLMModel(LlavaMetaModel, StableLMEpochModel): |
|
config_class = LlavaStableLM_1_6bConfig |
|
|
|
def __init__(self, config: AutoConfig): |
|
super(LlavaStableLMModel, self).__init__(config) |
|
|
|
|
|
|
|
class LlavaStableLM_1_6bForCausalLM(StableLMEpochForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaStableLM_1_6bConfig |
|
|
|
|
|
def __init__(self, config, init_vision_encoder_from_ckpt=True): |
|
config._attn_implementation = "flash_attention_2" |
|
|
|
super(StableLMEpochForCausalLM, self).__init__(config) |
|
|
|
self.model = LlavaStableLMModel(config) |
|
if hasattr(self.model, '_use_flash_attention_2'): |
|
assert self.model._use_flash_attention_2, 'flash attn is not enabled. check it out!' |
|
|
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
if init_vision_encoder_from_ckpt: |
|
vision_tower = self.get_vision_tower() |
|
print(f'loading from CLIP first. This should only be used at inference!!!') |
|
vision_tower.load_model() |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def get_tokenizer(self): |
|
return self.tokenizer |
|
|
|
def get_processor(self): |
|
return self.model.vision_tower.image_processor |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
|
|
) = self.prepare_inputs_labels_for_multimodal_new( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images |
|
) |
|
|
|
return super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
_inputs = super().prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
if images is not None: |
|
_inputs['images'] = images |
|
return _inputs |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) : |
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
|
|
if images is not None: |
|
( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
_, |
|
inputs_embeds, |
|
_ |
|
) = self.prepare_inputs_labels_for_multimodal_new( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
None, |
|
None, |
|
images |
|
) |
|
else: |
|
inputs_embeds = self.get_model().embed_tokens(inputs) |
|
|
|
|
|
return super().generate( |
|
position_ids=None, |
|
attention_mask=None, |
|
inputs_embeds=inputs_embeds, |
|
**kwargs |
|
) |
|
|
|
|
|
def chat( |
|
self, |
|
texts: Optional[str | list[list[str, str]]], |
|
images: Optional[str | list[str]] = None, |
|
history: Optional[list[str]] = None, |
|
stream = False, |
|
return_history = False, |
|
**kwargs |
|
): |
|
''' |
|
texts: if `str`, then generate for a single round; if list[dict], |
|
images: str (optional), local path to an image. |
|
''' |
|
use_cache = kwargs.pop('use_cache', True) |
|
|
|
|
|
|
|
|
|
|
|
input_ids, image_tensors, history = build_allava_input( |
|
tokenizer = self.get_tokenizer(), |
|
processor = self.get_processor(), |
|
texts = texts, |
|
images = images, |
|
history=history, |
|
return_history=return_history, |
|
device = self.device |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if 'cuda' in str(self.device): |
|
device_type = 'cuda' |
|
else: |
|
device_type = 'cpu' |
|
|
|
with torch.autocast(device_type=device_type, dtype=self.dtype): |
|
output_ids = self.generate( |
|
inputs=input_ids, |
|
images=image_tensors, |
|
use_cache=use_cache, |
|
**kwargs) |
|
|
|
answer = self.get_tokenizer().decode(output_ids[0, :], skip_special_tokens=True).strip() |
|
|
|
if return_history: |
|
history[-1][-1] = answer |
|
return answer, history |
|
return answer |
|
|
|
|
|
AutoConfig.register("llava_stablelm_1_6b", LlavaStableLM_1_6bConfig) |
|
|
|
AutoModelForCausalLM.register(LlavaStableLM_1_6bConfig, LlavaStableLM_1_6bForCausalLM) |
|
|