Xidong commited on
Commit
78a3901
·
verified ·
1 Parent(s): 5a85b21

Upload ./modeling_yi.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_yi.py +1035 -0
modeling_yi.py ADDED
@@ -0,0 +1,1035 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch Yi model."""
2
+ import math
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import torch.utils.checkpoint
6
+ from einops import repeat
7
+ from packaging import version
8
+ from torch import nn
9
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
10
+ from transformers.activations import ACT2FN
11
+ from transformers.modeling_outputs import (
12
+ BaseModelOutputWithPast,
13
+ CausalLMOutputWithPast,
14
+ SequenceClassifierOutputWithPast,
15
+ )
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
18
+ from transformers.utils import (
19
+ add_start_docstrings,
20
+ add_start_docstrings_to_model_forward,
21
+ logging,
22
+ replace_return_docstrings,
23
+ )
24
+
25
+ from .configuration_yi import YiConfig
26
+
27
+ is_flash_attn_available = True
28
+ try:
29
+ from flash_attn import flash_attn_func, __version__
30
+
31
+ assert version.parse(__version__) >= version.parse(
32
+ "2.3.0"
33
+ ), "please update your flash_attn version (>= 2.3.0)"
34
+ except ModuleNotFoundError:
35
+ is_flash_attn_available = False
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ _CONFIG_FOR_DOC = "YiConfig"
40
+
41
+
42
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
43
+ def _make_causal_mask(
44
+ input_ids_shape: torch.Size,
45
+ dtype: torch.dtype,
46
+ device: torch.device,
47
+ past_key_values_length: int = 0,
48
+ ):
49
+ """
50
+ Make causal mask used for bi-directional self-attention.
51
+ """
52
+ bsz, tgt_len = input_ids_shape
53
+ mask = torch.full(
54
+ (tgt_len, tgt_len),
55
+ torch.tensor(torch.finfo(dtype).min, device=device),
56
+ device=device,
57
+ )
58
+ mask_cond = torch.arange(mask.size(-1), device=device)
59
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
60
+ mask = mask.to(dtype)
61
+
62
+ if past_key_values_length > 0:
63
+ mask = torch.cat(
64
+ [
65
+ torch.zeros(
66
+ tgt_len, past_key_values_length, dtype=dtype, device=device
67
+ ),
68
+ mask,
69
+ ],
70
+ dim=-1,
71
+ )
72
+ return mask[None, None, :, :].expand(
73
+ bsz, 1, tgt_len, tgt_len + past_key_values_length
74
+ )
75
+
76
+
77
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
78
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
79
+ """
80
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
81
+ """
82
+ bsz, src_len = mask.size()
83
+ tgt_len = tgt_len if tgt_len is not None else src_len
84
+
85
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
86
+
87
+ inverted_mask = 1.0 - expanded_mask
88
+
89
+ return inverted_mask.masked_fill(
90
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
91
+ )
92
+
93
+
94
+ class YiRMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-5):
96
+ """
97
+ YiRMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+
109
+ return self.weight * hidden_states.to(input_dtype)
110
+
111
+
112
+ ALL_LAYERNORM_LAYERS.append(YiRMSNorm)
113
+
114
+
115
+ class YiRotaryEmbedding(torch.nn.Module):
116
+ def __init__(self, dim, max_position_embeddings=4096, base=5000000, device=None):
117
+ super().__init__()
118
+
119
+ self.dim = dim
120
+ self.max_position_embeddings = max_position_embeddings
121
+ self.base = base
122
+
123
+ # Build here to make `torch.jit.trace` work.
124
+ self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device)
125
+
126
+ def _set_cos_sin_cache(self, seq_len, device):
127
+ self.max_seq_len_cached = seq_len
128
+ inv_freq = 1.0 / (
129
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
130
+ )
131
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
132
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
133
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
134
+ emb = torch.cat((freqs, freqs), dim=-1)
135
+ self.register_buffer(
136
+ "cos_cached", emb.cos()[None, None, :, :], persistent=False
137
+ )
138
+ self.register_buffer(
139
+ "sin_cached", emb.sin()[None, None, :, :], persistent=False
140
+ )
141
+
142
+ def forward(self, x, seq_len=None):
143
+ # x: [bs, num_attention_heads, seq_len, head_size]
144
+ if seq_len > self.max_seq_len_cached:
145
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device)
146
+
147
+ return (
148
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
149
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
150
+ )
151
+
152
+
153
+ def rotate_half(x):
154
+ """Rotates half the hidden dims of the input."""
155
+ x1 = x[..., : x.shape[-1] // 2]
156
+ x2 = x[..., x.shape[-1] // 2 :]
157
+ return torch.cat((-x2, x1), dim=-1)
158
+
159
+
160
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, flash_attn_available):
161
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
162
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
163
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
164
+ expand_dim = 2 if flash_attn_available else 1
165
+ cos = cos[position_ids].unsqueeze(expand_dim) # [bs, seq_len, dim]
166
+ sin = sin[position_ids].unsqueeze(expand_dim) # [bs, seq_len, dim]
167
+ q_embed = (q * cos) + (rotate_half(q) * sin)
168
+ k_embed = (k * cos) + (rotate_half(k) * sin)
169
+ return q_embed, k_embed
170
+
171
+
172
+ class YiMLP(nn.Module):
173
+ def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
174
+ super().__init__()
175
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
176
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
177
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
178
+ self.act_fn = ACT2FN[hidden_act]
179
+
180
+ def forward(self, x):
181
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
182
+
183
+
184
+ class YiAttention(nn.Module):
185
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
186
+
187
+ def __init__(self, config: YiConfig):
188
+ super().__init__()
189
+ self.config = config
190
+ self.hidden_size = config.hidden_size
191
+ self.num_heads = config.num_attention_heads
192
+ self.head_dim = self.hidden_size // self.num_heads
193
+ self.num_key_value_heads = config.num_key_value_heads
194
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
195
+ self.max_position_embeddings = config.max_position_embeddings
196
+
197
+ if (self.head_dim * self.num_heads) != self.hidden_size:
198
+ raise ValueError(
199
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
200
+ f" and `num_heads`: {self.num_heads})."
201
+ )
202
+ self.q_proj = nn.Linear(
203
+ self.hidden_size, self.num_heads * self.head_dim, bias=False
204
+ )
205
+ self.k_proj = nn.Linear(
206
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
207
+ )
208
+ self.v_proj = nn.Linear(
209
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
210
+ )
211
+ self.o_proj = nn.Linear(
212
+ self.num_heads * self.head_dim, self.hidden_size, bias=False
213
+ )
214
+
215
+ self.rotary_emb = YiRotaryEmbedding(
216
+ self.head_dim,
217
+ max_position_embeddings=self.max_position_embeddings,
218
+ base=self.config.rope_theta,
219
+ )
220
+
221
+ def forward(
222
+ self,
223
+ hidden_states: torch.Tensor,
224
+ attention_mask: Optional[torch.Tensor] = None,
225
+ position_ids: Optional[torch.LongTensor] = None,
226
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
227
+ output_attentions: bool = False,
228
+ use_cache: bool = False,
229
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
230
+ bsz, q_len, _ = hidden_states.size()
231
+
232
+ query_states = self.q_proj(hidden_states).view(
233
+ bsz, q_len, self.num_heads, self.head_dim
234
+ )
235
+
236
+ key_states = self.k_proj(hidden_states).view(
237
+ bsz, q_len, self.num_key_value_heads, self.head_dim
238
+ )
239
+ value_states = self.v_proj(hidden_states).view(
240
+ bsz, q_len, self.num_key_value_heads, self.head_dim
241
+ )
242
+
243
+ if not is_flash_attn_available:
244
+ if self.num_key_value_groups > 1:
245
+ key_states = repeat(
246
+ key_states, f"b n h d -> b n (h {self.num_key_value_groups}) d"
247
+ )
248
+ value_states = repeat(
249
+ value_states, f"b n h d -> b n (h {self.num_key_value_groups}) d"
250
+ )
251
+
252
+ # b n h d -> b h n d
253
+ query_states = query_states.transpose(1, 2)
254
+ key_states = key_states.transpose(1, 2)
255
+ value_states = value_states.transpose(1, 2)
256
+
257
+ seq_dim = 1 if is_flash_attn_available else 2
258
+ kv_seq_len = key_states.shape[seq_dim]
259
+ if past_key_value is not None:
260
+ kv_seq_len += past_key_value[0].shape[seq_dim]
261
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
262
+ query_states, key_states = apply_rotary_pos_emb(
263
+ query_states, key_states, cos, sin, position_ids, is_flash_attn_available
264
+ )
265
+
266
+ if past_key_value is not None:
267
+ # reuse k, v, self_attention
268
+ key_states = torch.cat([past_key_value[0], key_states], dim=seq_dim)
269
+ value_states = torch.cat([past_key_value[1], value_states], dim=seq_dim)
270
+
271
+ past_key_value = (key_states, value_states) if use_cache else None
272
+
273
+ if is_flash_attn_available:
274
+ attn_output = flash_attn_func(
275
+ query_states, key_states, value_states, dropout_p=0.0, causal=True
276
+ )
277
+ else:
278
+ attn_weights = torch.matmul(
279
+ query_states, key_states.transpose(2, 3)
280
+ ) / math.sqrt(self.head_dim)
281
+
282
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
283
+ raise ValueError(
284
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
285
+ f" {attn_weights.size()}"
286
+ )
287
+
288
+ if attention_mask is not None:
289
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
290
+ raise ValueError(
291
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is"
292
+ f"{attention_mask.size()}"
293
+ )
294
+ attn_weights = attn_weights + attention_mask
295
+ dtype_min = torch.tensor(
296
+ torch.finfo(attn_weights.dtype).min,
297
+ device=attn_weights.device,
298
+ dtype=attn_weights.dtype,
299
+ )
300
+ attn_weights = torch.max(attn_weights, dtype_min)
301
+
302
+ # upcast attention to fp32
303
+ attn_weights = nn.functional.softmax(
304
+ attn_weights, dim=-1, dtype=torch.float32
305
+ ).to(query_states.dtype)
306
+ attn_output = torch.matmul(attn_weights, value_states)
307
+
308
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
309
+ raise ValueError(
310
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
311
+ f" {attn_output.size()}"
312
+ )
313
+
314
+ if not is_flash_attn_available:
315
+ attn_output = attn_output.transpose(1, 2)
316
+
317
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
318
+
319
+ attn_output = self.o_proj(attn_output)
320
+
321
+ if not output_attentions:
322
+ attn_weights = None
323
+
324
+ return attn_output, attn_weights, past_key_value
325
+
326
+
327
+ class YiDecoderLayer(nn.Module):
328
+ def __init__(self, config: YiConfig):
329
+ super().__init__()
330
+
331
+ self.hidden_size = config.hidden_size
332
+ self.self_attn = YiAttention(config=config)
333
+ self.mlp = YiMLP(
334
+ hidden_size=self.hidden_size,
335
+ intermediate_size=config.intermediate_size,
336
+ hidden_act=config.hidden_act,
337
+ )
338
+
339
+ self.ln1 = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
340
+ self.ln2 = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
341
+
342
+ def forward(
343
+ self,
344
+ hidden_states: torch.Tensor,
345
+ attention_mask: Optional[torch.Tensor] = None,
346
+ position_ids: Optional[torch.LongTensor] = None,
347
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
348
+ output_attentions: Optional[bool] = False,
349
+ use_cache: Optional[bool] = False,
350
+ ) -> Tuple[
351
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
352
+ ]:
353
+ """
354
+ Args:
355
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
356
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
357
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
358
+ output_attentions (`bool`, *optional*):
359
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
360
+ returned tensors for more detail.
361
+ use_cache (`bool`, *optional*):
362
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
363
+ (see `past_key_values`).
364
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
365
+ """
366
+
367
+ residual = hidden_states
368
+
369
+ hidden_states = self.ln1(hidden_states)
370
+
371
+ # Self Attention
372
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
373
+ hidden_states=hidden_states,
374
+ attention_mask=attention_mask,
375
+ position_ids=position_ids,
376
+ past_key_value=past_key_value,
377
+ output_attentions=output_attentions,
378
+ use_cache=use_cache,
379
+ )
380
+ hidden_states = residual + hidden_states
381
+
382
+ # Fully Connected
383
+ residual = hidden_states
384
+ hidden_states = self.ln2(hidden_states)
385
+ hidden_states = self.mlp(hidden_states)
386
+ hidden_states = residual + hidden_states
387
+
388
+ outputs = (hidden_states,)
389
+
390
+ if output_attentions:
391
+ outputs += (self_attn_weights,)
392
+
393
+ if use_cache:
394
+ outputs += (present_key_value,)
395
+
396
+ return outputs
397
+
398
+
399
+ Yi_START_DOCSTRING = r"""
400
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
401
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
402
+ etc.)
403
+
404
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
405
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
406
+ and behavior.
407
+
408
+ Parameters:
409
+ config ([`YiConfig`]):
410
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
411
+ load the weights associated with the model, only the configuration. Check out the
412
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
413
+ """
414
+
415
+
416
+ @add_start_docstrings(
417
+ "The bare Yi Model outputting raw hidden-states without any specific head on top.",
418
+ Yi_START_DOCSTRING,
419
+ )
420
+ class YiPreTrainedModel(PreTrainedModel):
421
+ config_class = YiConfig
422
+ base_model_prefix = "model"
423
+ supports_gradient_checkpointing = True
424
+ _no_split_modules = ["YiDecoderLayer"]
425
+ _skip_keys_device_placement = "past_key_values"
426
+
427
+ def _init_weights(self, module):
428
+ std = self.config.initializer_range
429
+ if isinstance(module, nn.Linear):
430
+ module.weight.data.normal_(mean=0.0, std=std)
431
+ if module.bias is not None:
432
+ module.bias.data.zero_()
433
+ elif isinstance(module, nn.Embedding):
434
+ module.weight.data.normal_(mean=0.0, std=std)
435
+ if module.padding_idx is not None:
436
+ module.weight.data[module.padding_idx].zero_()
437
+
438
+ def _set_gradient_checkpointing(self, module, value=False):
439
+ if isinstance(module, YiModel):
440
+ module.gradient_checkpointing = value
441
+
442
+
443
+ Yi_INPUTS_DOCSTRING = r"""
444
+ Args:
445
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
446
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
447
+ it.
448
+
449
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
450
+ [`PreTrainedTokenizer.__call__`] for details.
451
+
452
+ [What are input IDs?](../glossary#input-ids)
453
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
454
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
455
+
456
+ - 1 for tokens that are **not masked**,
457
+ - 0 for tokens that are **masked**.
458
+
459
+ [What are attention masks?](../glossary#attention-mask)
460
+
461
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
462
+ [`PreTrainedTokenizer.__call__`] for details.
463
+
464
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
465
+ `past_key_values`).
466
+
467
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
468
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
469
+ information on the default strategy.
470
+
471
+ - 1 indicates the head is **not masked**,
472
+ - 0 indicates the head is **masked**.
473
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
474
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
475
+ config.n_positions - 1]`.
476
+
477
+ [What are position IDs?](../glossary#position-ids)
478
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
479
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
480
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
481
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
482
+
483
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
484
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
485
+
486
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
487
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
488
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
489
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
490
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
491
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
492
+ model's internal embedding lookup matrix.
493
+ use_cache (`bool`, *optional*):
494
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
495
+ `past_key_values`).
496
+ output_attentions (`bool`, *optional*):
497
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
498
+ tensors for more detail.
499
+ output_hidden_states (`bool`, *optional*):
500
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
501
+ more detail.
502
+ return_dict (`bool`, *optional*):
503
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
504
+ """
505
+
506
+
507
+ @add_start_docstrings(
508
+ "The bare Yi Model outputting raw hidden-states without any specific head on top.",
509
+ Yi_START_DOCSTRING,
510
+ )
511
+ class YiModel(YiPreTrainedModel):
512
+ """
513
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YiDecoderLayer`]
514
+
515
+ Args:
516
+ config: YiConfig
517
+ """
518
+
519
+ def __init__(self, config: YiConfig):
520
+ super().__init__(config)
521
+ self.padding_idx = config.pad_token_id
522
+ self.vocab_size = config.vocab_size
523
+
524
+ self.embed_tokens = nn.Embedding(
525
+ config.vocab_size, config.hidden_size, self.padding_idx
526
+ )
527
+ self.layers = nn.ModuleList(
528
+ [YiDecoderLayer(config) for _ in range(config.num_hidden_layers)]
529
+ )
530
+
531
+ self.norm = YiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
532
+
533
+ self.gradient_checkpointing = False
534
+ # Initialize weights and apply final processing
535
+ self.post_init()
536
+
537
+ def get_input_embeddings(self):
538
+ return self.embed_tokens
539
+
540
+ def set_input_embeddings(self, value):
541
+ self.embed_tokens = value
542
+
543
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
544
+ def _prepare_decoder_attention_mask(
545
+ self, attention_mask, input_ids, inputs_embeds, past_key_values_length
546
+ ):
547
+ input_shape = (
548
+ input_ids.shape if input_ids is not None else inputs_embeds.shape[:-1]
549
+ )
550
+ # create causal mask
551
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
552
+ combined_attention_mask = None
553
+ if input_shape[-1] > 1:
554
+ combined_attention_mask = _make_causal_mask(
555
+ input_shape,
556
+ inputs_embeds.dtype,
557
+ device=inputs_embeds.device,
558
+ past_key_values_length=past_key_values_length,
559
+ )
560
+
561
+ if attention_mask is not None:
562
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
563
+ expanded_attn_mask = _expand_mask(
564
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
565
+ ).to(inputs_embeds.device)
566
+ combined_attention_mask = (
567
+ expanded_attn_mask
568
+ if combined_attention_mask is None
569
+ else expanded_attn_mask + combined_attention_mask
570
+ )
571
+
572
+ return combined_attention_mask
573
+
574
+ @add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
575
+ def forward(
576
+ self,
577
+ input_ids: torch.LongTensor = None,
578
+ attention_mask: Optional[torch.Tensor] = None,
579
+ position_ids: Optional[torch.LongTensor] = None,
580
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
581
+ inputs_embeds: Optional[torch.FloatTensor] = None,
582
+ use_cache: Optional[bool] = None,
583
+ output_attentions: Optional[bool] = None,
584
+ output_hidden_states: Optional[bool] = None,
585
+ return_dict: Optional[bool] = None,
586
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
587
+ output_attentions = (
588
+ output_attentions
589
+ if output_attentions is not None
590
+ else self.config.output_attentions
591
+ )
592
+ output_hidden_states = (
593
+ output_hidden_states
594
+ if output_hidden_states is not None
595
+ else self.config.output_hidden_states
596
+ )
597
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
598
+
599
+ return_dict = (
600
+ return_dict if return_dict is not None else self.config.use_return_dict
601
+ )
602
+
603
+ # retrieve input_ids and inputs_embeds
604
+ if input_ids is not None and inputs_embeds is not None:
605
+ raise ValueError(
606
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
607
+ )
608
+ elif input_ids is not None:
609
+ batch_size, seq_length = input_ids.shape
610
+ elif inputs_embeds is not None:
611
+ batch_size, seq_length, _ = inputs_embeds.shape
612
+ else:
613
+ raise ValueError(
614
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
615
+ )
616
+
617
+ seq_length_with_past = seq_length
618
+ past_key_values_length = 0
619
+
620
+ if past_key_values is not None:
621
+ past_key_values_length = past_key_values[0][0].shape[2]
622
+ seq_length_with_past = seq_length_with_past + past_key_values_length
623
+
624
+ if position_ids is None:
625
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
626
+ position_ids = torch.arange(
627
+ past_key_values_length,
628
+ seq_length + past_key_values_length,
629
+ dtype=torch.long,
630
+ device=device,
631
+ )
632
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
633
+ else:
634
+ position_ids = position_ids.view(-1, seq_length).long()
635
+
636
+ if inputs_embeds is None:
637
+ inputs_embeds = self.embed_tokens(input_ids)
638
+
639
+ if not is_flash_attn_available:
640
+ # embed positions
641
+ if attention_mask is None:
642
+ attention_mask = torch.ones(
643
+ (batch_size, seq_length_with_past),
644
+ dtype=torch.bool,
645
+ device=inputs_embeds.device,
646
+ )
647
+ attention_mask = self._prepare_decoder_attention_mask(
648
+ attention_mask,
649
+ input_ids,
650
+ inputs_embeds,
651
+ past_key_values_length,
652
+ )
653
+ else:
654
+ attention_mask = None
655
+
656
+ hidden_states = inputs_embeds
657
+ if self.gradient_checkpointing and self.training:
658
+ if use_cache:
659
+ logger.warning_once(
660
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
661
+ )
662
+ use_cache = False
663
+
664
+ # decoder layers
665
+ all_hidden_states = () if output_hidden_states else None
666
+ all_self_attns = () if output_attentions else None
667
+ next_decoder_cache = () if use_cache else None
668
+
669
+ for idx, decoder_layer in enumerate(self.layers):
670
+ if output_hidden_states:
671
+ all_hidden_states += (hidden_states,)
672
+
673
+ past_key_value = (
674
+ past_key_values[idx] if past_key_values is not None else None
675
+ )
676
+
677
+ if self.gradient_checkpointing and self.training:
678
+
679
+ def create_custom_forward(module):
680
+ def custom_forward(*inputs):
681
+ # None for past_key_value
682
+ return module(*inputs, past_key_value, output_attentions)
683
+
684
+ return custom_forward
685
+
686
+ layer_outputs = torch.utils.checkpoint.checkpoint(
687
+ create_custom_forward(decoder_layer),
688
+ hidden_states,
689
+ attention_mask,
690
+ position_ids,
691
+ )
692
+ else:
693
+ layer_outputs = decoder_layer(
694
+ hidden_states,
695
+ attention_mask=attention_mask,
696
+ position_ids=position_ids,
697
+ past_key_value=past_key_value,
698
+ output_attentions=output_attentions,
699
+ use_cache=use_cache,
700
+ )
701
+
702
+ hidden_states = layer_outputs[0]
703
+
704
+ if use_cache:
705
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
706
+
707
+ if output_attentions:
708
+ all_self_attns += (layer_outputs[1],)
709
+
710
+ hidden_states = self.norm(hidden_states)
711
+ # add hidden states from the last decoder layer
712
+ if output_hidden_states:
713
+ all_hidden_states += (hidden_states,)
714
+
715
+ next_cache = next_decoder_cache if use_cache else None
716
+ if not return_dict:
717
+ return tuple(
718
+ v
719
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
720
+ if v is not None
721
+ )
722
+ return BaseModelOutputWithPast(
723
+ last_hidden_state=hidden_states,
724
+ past_key_values=next_cache,
725
+ hidden_states=all_hidden_states,
726
+ attentions=all_self_attns,
727
+ )
728
+
729
+
730
+ class YiForCausalLM(YiPreTrainedModel):
731
+ _tied_weights_keys = ["lm_head.weight"]
732
+
733
+ def __init__(self, config):
734
+ super().__init__(config)
735
+ self.model = YiModel(config)
736
+
737
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
738
+
739
+ # Initialize weights and apply final processing
740
+ self.post_init()
741
+
742
+ def get_input_embeddings(self):
743
+ return self.model.embed_tokens
744
+
745
+ def set_input_embeddings(self, value):
746
+ self.model.embed_tokens = value
747
+
748
+ def get_output_embeddings(self):
749
+ return self.lm_head
750
+
751
+ def set_output_embeddings(self, new_embeddings):
752
+ self.lm_head = new_embeddings
753
+
754
+ def set_decoder(self, decoder):
755
+ self.model = decoder
756
+
757
+ def get_decoder(self):
758
+ return self.model
759
+
760
+ @add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
761
+ @replace_return_docstrings(
762
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
763
+ )
764
+ def forward(
765
+ self,
766
+ input_ids: torch.LongTensor = None,
767
+ attention_mask: Optional[torch.Tensor] = None,
768
+ position_ids: Optional[torch.LongTensor] = None,
769
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
770
+ inputs_embeds: Optional[torch.FloatTensor] = None,
771
+ labels: Optional[torch.LongTensor] = None,
772
+ use_cache: Optional[bool] = None,
773
+ output_attentions: Optional[bool] = None,
774
+ output_hidden_states: Optional[bool] = None,
775
+ return_dict: Optional[bool] = None,
776
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
777
+ r"""
778
+ Args:
779
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
780
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
781
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
782
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
783
+
784
+ Returns:
785
+
786
+ Example:
787
+
788
+ ```python
789
+ >>> from transformers import AutoTokenizer, YiForCausalLM
790
+
791
+ >>> model = YiForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
792
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
793
+
794
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
795
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
796
+
797
+ >>> # Generate
798
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
799
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
800
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
801
+ ```"""
802
+
803
+ output_attentions = (
804
+ output_attentions
805
+ if output_attentions is not None
806
+ else self.config.output_attentions
807
+ )
808
+ output_hidden_states = (
809
+ output_hidden_states
810
+ if output_hidden_states is not None
811
+ else self.config.output_hidden_states
812
+ )
813
+ return_dict = (
814
+ return_dict if return_dict is not None else self.config.use_return_dict
815
+ )
816
+
817
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
818
+ outputs = self.model(
819
+ input_ids=input_ids,
820
+ attention_mask=attention_mask,
821
+ position_ids=position_ids,
822
+ past_key_values=past_key_values,
823
+ inputs_embeds=inputs_embeds,
824
+ use_cache=use_cache,
825
+ output_attentions=output_attentions,
826
+ output_hidden_states=output_hidden_states,
827
+ return_dict=return_dict,
828
+ )
829
+
830
+ hidden_states = outputs[0]
831
+ logits = self.lm_head(hidden_states)
832
+
833
+ loss = None
834
+ if labels is not None:
835
+ # Shift so that tokens < n predict n
836
+ shift_logits = logits[..., :-1, :].contiguous()
837
+ shift_labels = labels[..., 1:].contiguous()
838
+ # Flatten the tokens
839
+ loss_fct = CrossEntropyLoss()
840
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
841
+ shift_labels = shift_labels.view(-1)
842
+ # Enable model parallelism
843
+ shift_labels = shift_labels.to(shift_logits.device)
844
+ loss = loss_fct(shift_logits, shift_labels)
845
+
846
+ if not return_dict:
847
+ output = (logits,) + outputs[1:]
848
+ return (loss,) + output if loss is not None else output
849
+
850
+ return CausalLMOutputWithPast(
851
+ loss=loss,
852
+ logits=logits,
853
+ past_key_values=outputs.past_key_values,
854
+ hidden_states=outputs.hidden_states,
855
+ attentions=outputs.attentions,
856
+ )
857
+
858
+ def prepare_inputs_for_generation(
859
+ self,
860
+ input_ids,
861
+ past_key_values=None,
862
+ attention_mask=None,
863
+ inputs_embeds=None,
864
+ **kwargs,
865
+ ):
866
+ if past_key_values:
867
+ input_ids = input_ids[:, -1:]
868
+
869
+ position_ids = kwargs.get("position_ids", None)
870
+ if attention_mask is not None and position_ids is None:
871
+ # create position_ids on the fly for batch generation
872
+ position_ids = attention_mask.long().cumsum(-1) - 1
873
+ position_ids.masked_fill_(attention_mask == 0, 1)
874
+ if past_key_values:
875
+ position_ids = position_ids[:, -1].unsqueeze(-1)
876
+
877
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
878
+ if inputs_embeds is not None and past_key_values is None:
879
+ model_inputs = {"inputs_embeds": inputs_embeds}
880
+ else:
881
+ model_inputs = {"input_ids": input_ids}
882
+
883
+ model_inputs.update(
884
+ {
885
+ "position_ids": position_ids,
886
+ "past_key_values": past_key_values,
887
+ "use_cache": kwargs.get("use_cache"),
888
+ "attention_mask": attention_mask,
889
+ }
890
+ )
891
+ return model_inputs
892
+
893
+ @staticmethod
894
+ def _reorder_cache(past_key_values, beam_idx):
895
+ reordered_past = ()
896
+ for layer_past in past_key_values:
897
+ reordered_past += (
898
+ tuple(
899
+ past_state.index_select(0, beam_idx.to(past_state.device))
900
+ for past_state in layer_past
901
+ ),
902
+ )
903
+ return reordered_past
904
+
905
+
906
+ @add_start_docstrings(
907
+ """
908
+ The Yi Model transformer with a sequence classification head on top (linear layer).
909
+
910
+ [`YiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
911
+ (e.g. GPT-2) do.
912
+
913
+ Since it does classification on the last token, it requires to know the position of the last token. If a
914
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
915
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
916
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
917
+ each row of the batch).
918
+ """,
919
+ Yi_START_DOCSTRING,
920
+ )
921
+ class YiForSequenceClassification(YiPreTrainedModel):
922
+ def __init__(self, config):
923
+ super().__init__(config)
924
+ self.num_labels = config.num_labels
925
+ self.model = YiModel(config)
926
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
927
+
928
+ # Initialize weights and apply final processing
929
+ self.post_init()
930
+
931
+ def get_input_embeddings(self):
932
+ return self.model.embed_tokens
933
+
934
+ def set_input_embeddings(self, value):
935
+ self.model.embed_tokens = value
936
+
937
+ @add_start_docstrings_to_model_forward(Yi_INPUTS_DOCSTRING)
938
+ def forward(
939
+ self,
940
+ input_ids: torch.LongTensor = None,
941
+ attention_mask: Optional[torch.Tensor] = None,
942
+ position_ids: Optional[torch.LongTensor] = None,
943
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
944
+ inputs_embeds: Optional[torch.FloatTensor] = None,
945
+ labels: Optional[torch.LongTensor] = None,
946
+ use_cache: Optional[bool] = None,
947
+ output_attentions: Optional[bool] = None,
948
+ output_hidden_states: Optional[bool] = None,
949
+ return_dict: Optional[bool] = None,
950
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
951
+ r"""
952
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
953
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
954
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
955
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
956
+ """
957
+ return_dict = (
958
+ return_dict if return_dict is not None else self.config.use_return_dict
959
+ )
960
+
961
+ transformer_outputs = self.model(
962
+ input_ids,
963
+ attention_mask=attention_mask,
964
+ position_ids=position_ids,
965
+ past_key_values=past_key_values,
966
+ inputs_embeds=inputs_embeds,
967
+ use_cache=use_cache,
968
+ output_attentions=output_attentions,
969
+ output_hidden_states=output_hidden_states,
970
+ return_dict=return_dict,
971
+ )
972
+ hidden_states = transformer_outputs[0]
973
+ logits = self.score(hidden_states)
974
+
975
+ if input_ids is not None:
976
+ batch_size = input_ids.shape[0]
977
+ else:
978
+ batch_size = inputs_embeds.shape[0]
979
+
980
+ if self.config.pad_token_id is None and batch_size != 1:
981
+ raise ValueError(
982
+ "Cannot handle batch sizes > 1 if no padding token is defined."
983
+ )
984
+ if self.config.pad_token_id is None:
985
+ sequence_lengths = -1
986
+ else:
987
+ if input_ids is not None:
988
+ sequence_lengths = (
989
+ torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1
990
+ ).to(logits.device)
991
+ else:
992
+ sequence_lengths = -1
993
+
994
+ pooled_logits = logits[
995
+ torch.arange(batch_size, device=logits.device), sequence_lengths
996
+ ]
997
+
998
+ loss = None
999
+ if labels is not None:
1000
+ labels = labels.to(logits.device)
1001
+ if self.config.problem_type is None:
1002
+ if self.num_labels == 1:
1003
+ self.config.problem_type = "regression"
1004
+ elif self.num_labels > 1 and (
1005
+ labels.dtype == torch.long or labels.dtype == torch.int
1006
+ ):
1007
+ self.config.problem_type = "single_label_classification"
1008
+ else:
1009
+ self.config.problem_type = "multi_label_classification"
1010
+
1011
+ if self.config.problem_type == "regression":
1012
+ loss_fct = MSELoss()
1013
+ if self.num_labels == 1:
1014
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1015
+ else:
1016
+ loss = loss_fct(pooled_logits, labels)
1017
+ elif self.config.problem_type == "single_label_classification":
1018
+ loss_fct = CrossEntropyLoss()
1019
+ loss = loss_fct(
1020
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1021
+ )
1022
+ elif self.config.problem_type == "multi_label_classification":
1023
+ loss_fct = BCEWithLogitsLoss()
1024
+ loss = loss_fct(pooled_logits, labels)
1025
+ if not return_dict:
1026
+ output = (pooled_logits,) + transformer_outputs[1:]
1027
+ return ((loss,) + output) if loss is not None else output
1028
+
1029
+ return SequenceClassifierOutputWithPast(
1030
+ loss=loss,
1031
+ logits=pooled_logits,
1032
+ past_key_values=transformer_outputs.past_key_values,
1033
+ hidden_states=transformer_outputs.hidden_states,
1034
+ attentions=transformer_outputs.attentions,
1035
+ )