FremyCompany commited on
Commit
642f976
·
1 Parent(s): 56c299c

Initial upload of the model

Browse files
README.md CHANGED
@@ -1,3 +1,88 @@
1
  ---
2
- license: mit
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+
8
  ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Evaluation Results
38
+
39
+ <!--- Describe how your model was evaluated -->
40
+
41
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
+
43
+
44
+ ## Training
45
+ The model was trained with the parameters:
46
+
47
+ **DataLoader**:
48
+
49
+ `torch.utils.data.dataloader.DataLoader` of length 90 with parameters:
50
+ ```
51
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
+ ```
53
+
54
+ **Loss**:
55
+
56
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
57
+
58
+ Parameters of the fit()-Method:
59
+ ```
60
+ {
61
+ "epochs": 5,
62
+ "evaluation_steps": 50,
63
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
64
+ "max_grad_norm": 1,
65
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
66
+ "optimizer_params": {
67
+ "lr": 1e-06
68
+ },
69
+ "scheduler": "WarmupLinear",
70
+ "steps_per_epoch": null,
71
+ "warmup_steps": 22,
72
+ "weight_decay": 0.001
73
+ }
74
+ ```
75
+
76
+
77
+ ## Full Model Architecture
78
+ ```
79
+ SentenceTransformer(
80
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
81
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
+ (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
83
+ )
84
+ ```
85
+
86
+ ## Citing & Authors
87
+
88
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/project_ghent/OpenSubtitles2018/nl_sts_v0/",
3
+ "additional_special_tokens_ids": [],
4
+ "architectures": [
5
+ "RobertaModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 0,
9
+ "classifier_dropout": null,
10
+ "cls_token_id": 0,
11
+ "eos_token_id": 1,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 1024,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "layer_norm_eps": 1e-05,
18
+ "mask_token_id": 4,
19
+ "max_position_embeddings": 514,
20
+ "model_type": "roberta",
21
+ "num_attention_heads": 16,
22
+ "num_hidden_layers": 24,
23
+ "pad_token_id": 1,
24
+ "position_embedding_type": "absolute",
25
+ "sep_token_id": 3,
26
+ "tokenizer_class": "RobertaTokenizerFast",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.30.2",
29
+ "type_vocab_size": 1,
30
+ "unk_token_id": 2,
31
+ "use_cache": true,
32
+ "vocab_size": 50000
33
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.30.2",
5
+ "pytorch": "1.12.1+cu113"
6
+ }
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743b06aa903395d898105753385ce77ff563ce37b948d45640c650b571c87705
3
+ size 1420486961
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "cls_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "__type": "AddedToken",
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "errors": "replace",
29
+ "mask_token": {
30
+ "__type": "AddedToken",
31
+ "content": "<mask>",
32
+ "lstrip": true,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "model_max_length": 512,
38
+ "pad_token": {
39
+ "__type": "AddedToken",
40
+ "content": "<pad>",
41
+ "lstrip": false,
42
+ "normalized": true,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ },
46
+ "sep_token": {
47
+ "__type": "AddedToken",
48
+ "content": "</s>",
49
+ "lstrip": false,
50
+ "normalized": true,
51
+ "rstrip": false,
52
+ "single_word": false
53
+ },
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": {
57
+ "__type": "AddedToken",
58
+ "content": "<unk>",
59
+ "lstrip": false,
60
+ "normalized": true,
61
+ "rstrip": false,
62
+ "single_word": false
63
+ }
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff