|
import argparse
|
|
from torch.utils.data import DataLoader
|
|
import lightning as L
|
|
|
|
from datasets import dataset_dict
|
|
from model import PL_RelPose, keypoint_dict
|
|
from configs.default import get_cfg_defaults
|
|
|
|
|
|
def main(args):
|
|
config = get_cfg_defaults()
|
|
config.merge_from_file(args.config)
|
|
|
|
task = config.DATASET.TASK
|
|
dataset = config.DATASET.DATA_SOURCE
|
|
|
|
batch_size = config.TRAINER.BATCH_SIZE
|
|
num_workers = config.TRAINER.NUM_WORKERS
|
|
pin_memory = config.TRAINER.PIN_MEMORY
|
|
|
|
test_num_keypoints = config.MODEL.TEST_NUM_KEYPOINTS
|
|
|
|
build_fn = dataset_dict[task][dataset]
|
|
testset = build_fn('test', config)
|
|
testloader = DataLoader(testset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory)
|
|
|
|
pl_relpose = PL_RelPose.load_from_checkpoint(args.ckpt_path)
|
|
pl_relpose.extractor = keypoint_dict[pl_relpose.hparams['features']](max_num_keypoints=test_num_keypoints, detection_threshold=0.0).eval()
|
|
|
|
trainer = L.Trainer(
|
|
devices=[0],
|
|
)
|
|
|
|
trainer.test(pl_relpose, dataloaders=testloader)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('config', type=str, help='.yaml configure file path')
|
|
parser.add_argument('ckpt_path', type=str)
|
|
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
main(args)
|
|
|