import numpy as np from typing import List, Tuple from dataclasses import dataclass from pathlib import Path from zipfile import ZipFile @dataclass class Pose: image_name: str q: np.ndarray t: np.ndarray inliers: float def __str__(self) -> str: formatter = {'float': lambda v: f'{v:.6f}'} max_line_width = 1000 q_str = np.array2string(self.q, formatter=formatter, max_line_width=max_line_width)[1:-1] t_str = np.array2string(self.t, formatter=formatter, max_line_width=max_line_width)[1:-1] return f'{self.image_name} {q_str} {t_str} {self.inliers}' def save_submission(results_dict: dict, output_path: Path): with ZipFile(output_path, 'w') as zip: for scene, poses in results_dict.items(): poses_str = '\n'.join((str(pose) for pose in poses)) zip.writestr(f'pose_{scene}.txt', poses_str.encode('utf-8')) def project(pts: np.ndarray, K: np.ndarray, img_size: List[int] or Tuple[int] = None) -> np.ndarray: """Projects 3D points to image plane. Args: - pts [N, 3/4]: points in camera coordinates (homogeneous or non-homogeneous) - K [3, 3]: intrinsic matrix - img_size (width, height): optional, clamp projection to image borders Outputs: - uv [N, 2]: coordinates of projected points """ assert len(pts.shape) == 2, 'incorrect number of dimensions' assert pts.shape[1] in [3, 4], 'invalid dimension size' assert K.shape == (3, 3), 'incorrect intrinsic shape' uv_h = (K @ pts[:, :3].T).T uv = uv_h[:, :2] / uv_h[:, -1:] if img_size is not None: uv[:, 0] = np.clip(uv[:, 0], 0, img_size[0]) uv[:, 1] = np.clip(uv[:, 1], 0, img_size[1]) return uv def get_grid_multipleheight() -> np.ndarray: # create grid of points ar_grid_step = 0.3 ar_grid_num_x = 7 ar_grid_num_y = 4 ar_grid_num_z = 7 ar_grid_z_offset = 1.8 ar_grid_y_offset = 0 ar_grid_x_pos = np.arange(0, ar_grid_num_x)-(ar_grid_num_x-1)/2 ar_grid_x_pos *= ar_grid_step ar_grid_y_pos = np.arange(0, ar_grid_num_y)-(ar_grid_num_y-1)/2 ar_grid_y_pos *= ar_grid_step ar_grid_y_pos += ar_grid_y_offset ar_grid_z_pos = np.arange(0, ar_grid_num_z).astype(float) ar_grid_z_pos *= ar_grid_step ar_grid_z_pos += ar_grid_z_offset xx, yy, zz = np.meshgrid(ar_grid_x_pos, ar_grid_y_pos, ar_grid_z_pos) ones = np.ones(xx.shape[0]*xx.shape[1]*xx.shape[2]) eye_coords = np.concatenate([c.reshape(-1, 1) for c in (xx, yy, zz, ones)], axis=-1) return eye_coords # global variable, avoids creating it again eye_coords_glob = get_grid_multipleheight() def reprojection_error( R_est: np.ndarray, t_est: np.ndarray, R_gt: np.ndarray, t_gt: np.ndarray, K: np.ndarray, W: int, H: int) -> float: eye_coords = eye_coords_glob # obtain ground-truth position of projected points uv_gt = project(eye_coords, K, (W, H)) # residual transformation cam2w_est = np.eye(4) if not np.isnan(R_est).any(): cam2w_est[:3, :3] = R_est cam2w_est[:3, -1] = t_est cam2w_gt = np.eye(4) cam2w_gt[:3, :3] = R_gt cam2w_gt[:3, -1] = t_gt # residual reprojection eyes_residual = (np.linalg.inv(cam2w_est) @ cam2w_gt @ eye_coords.T).T uv_pred = project(eyes_residual, K, (W, H)) # get reprojection error repr_err = np.linalg.norm(uv_gt - uv_pred, ord=2, axis=1) mean_repr_err = float(repr_err.mean().item()) return mean_repr_err