Frizio commited on
Commit
81516ad
1 Parent(s): 1d90ed4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - squad_v2
5
+ - covid_qa_deepset
6
+ license: cc-by-4.0
7
+ ---
8
+
9
+ # minilm-uncased-squad2 for QA on COVID-19
10
+
11
+ ## Overview
12
+ **Language model:** deepset/minilm-uncased-squad2
13
+ **Language:** English
14
+ **Downstream-task:** Extractive QA
15
+ **Training data:** [SQuAD-style COV-19 QA](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/COVID-QA.json)
16
+ **Infrastructure**: A4000
17
+
18
+ Initially fine-tuned for https://github.com/CDCapobianco/COVID-Question-Answering-REST-API
19
+ ## Hyperparameters
20
+ ```
21
+ batch_size = 24
22
+ n_epochs = 3
23
+ base_LM_model = "deepset/minilm-uncased-squad2"
24
+ max_seq_len = 384
25
+ learning_rate = 3e-5
26
+ lr_schedule = LinearWarmup
27
+ warmup_proportion = 0.1
28
+ doc_stride = 128
29
+ dev_split = 0
30
+ x_val_splits = 5
31
+ no_ans_boost = -100
32
+ ```
33
+ ---
34
+ license: cc-by-4.0
35
+ ---
36
+
37
+ ## Performance
38
+
39
+ **Single EM-Scores:** [0.7441, 0.7938, 0.6666, 0.6576, 0.6445]
40
+ **Single F1-Scores:** [0.8261, 0.8748, 0.8188, 0.7633, 0.7935]
41
+ **Single top\\_3\\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777]
42
+ **XVAL EM:** 0.7013
43
+ **XVAL f1:** 0.8153
44
+
45
+ ## Usage
46
+
47
+ ### In Haystack
48
+ For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
49
+ ```python
50
+ reader = FARMReader(model_name_or_path="Frizio/minilm-uncased-squad2-covidqa")
51
+ ```
52
+
53
+ ### In Transformers
54
+ ```python
55
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
56
+
57
+
58
+ model_name = "Frizio/minilm-uncased-squad2-covidqa"
59
+
60
+ # a) Get predictions
61
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
62
+ QA_input = {
63
+ 'question': 'Why is model conversion important?',
64
+ 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
65
+ }
66
+ res = nlp(QA_input)
67
+
68
+ # b) Load model & tokenizer
69
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
70
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
71
+ ```