example_usage (#3)
Browse files- [DEV]: Adding of example local model usage. (7e45025bea80f96e375d4fd958ce6f91ac3b5998)
- examples/inference.ipynb +228 -0
examples/inference.ipynb
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Install Dependencies"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 28,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Requirement already up-to-date: transformers in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (4.21.3)\n",
|
20 |
+
"Requirement already up-to-date: torch in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (1.12.1)\n",
|
21 |
+
"Requirement already up-to-date: torchvision in c:\\users\\divanma\\appdata\\roaming\\python\\python37\\site-packages (0.13.1)\n",
|
22 |
+
"Requirement already satisfied, skipping upgrade: numpy>=1.17 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (1.21.6)\n",
|
23 |
+
"Requirement already satisfied, skipping upgrade: pyyaml>=5.1 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (6.0)\n",
|
24 |
+
"Requirement already satisfied, skipping upgrade: tokenizers!=0.11.3,<0.13,>=0.11.1 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (0.12.1)\n",
|
25 |
+
"Requirement already satisfied, skipping upgrade: requests in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (2.28.1)\n",
|
26 |
+
"Requirement already satisfied, skipping upgrade: importlib-metadata; python_version < \"3.8\" in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (4.11.3)\n",
|
27 |
+
"Requirement already satisfied, skipping upgrade: packaging>=20.0 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (21.3)\n",
|
28 |
+
"Requirement already satisfied, skipping upgrade: huggingface-hub<1.0,>=0.1.0 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (0.9.1)\n",
|
29 |
+
"Requirement already satisfied, skipping upgrade: tqdm>=4.27 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (4.64.1)\n",
|
30 |
+
"Requirement already satisfied, skipping upgrade: regex!=2019.12.17 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (2022.9.11)\n",
|
31 |
+
"Requirement already satisfied, skipping upgrade: filelock in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (3.8.0)\n",
|
32 |
+
"Requirement already satisfied, skipping upgrade: typing-extensions in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from torch) (4.1.1)\n",
|
33 |
+
"Requirement already satisfied, skipping upgrade: pillow!=8.3.*,>=5.3.0 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from torchvision) (5.4.1)\n",
|
34 |
+
"Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (2022.6.15)\n",
|
35 |
+
"Requirement already satisfied, skipping upgrade: charset-normalizer<3,>=2 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (2.0.4)\n",
|
36 |
+
"Requirement already satisfied, skipping upgrade: urllib3<1.27,>=1.21.1 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (1.26.9)\n",
|
37 |
+
"Requirement already satisfied, skipping upgrade: idna<4,>=2.5 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (3.3)\n",
|
38 |
+
"Requirement already satisfied, skipping upgrade: zipp>=0.5 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from importlib-metadata; python_version < \"3.8\"->transformers) (3.8.0)\n",
|
39 |
+
"Requirement already satisfied, skipping upgrade: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from packaging>=20.0->transformers) (3.0.4)\n",
|
40 |
+
"Requirement already satisfied, skipping upgrade: colorama; platform_system == \"Windows\" in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from tqdm>=4.27->transformers) (0.4.5)\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"!pip install -U --user transformers torch torchvision"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "markdown",
|
50 |
+
"metadata": {},
|
51 |
+
"source": [
|
52 |
+
"# Import Dependencies"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 29,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
62 |
+
"import os"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "markdown",
|
67 |
+
"metadata": {},
|
68 |
+
"source": [
|
69 |
+
"# Load from Local"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": 30,
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"root_dir = os.getcwd()"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "markdown",
|
83 |
+
"metadata": {},
|
84 |
+
"source": [
|
85 |
+
"## Tokenizer"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 31,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"tokenizer = AutoTokenizer.from_pretrained(root_dir)"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "markdown",
|
99 |
+
"metadata": {},
|
100 |
+
"source": [
|
101 |
+
"## Model"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": 32,
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"ename": "MemoryError",
|
111 |
+
"evalue": "",
|
112 |
+
"output_type": "error",
|
113 |
+
"traceback": [
|
114 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
115 |
+
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
|
116 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnti\u001b[1;34m(s)\u001b[0m\n\u001b[0;32m 186\u001b[0m \u001b[0ms\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnts\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ascii\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"strict\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 187\u001b[1;33m \u001b[0mn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;34m\"0\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 188\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
117 |
+
"\u001b[1;31mValueError\u001b[0m: invalid literal for int() with base 8: 'q\\x03ctorch'",
|
118 |
+
"\nDuring handling of the above exception, another exception occurred:\n",
|
119 |
+
"\u001b[1;31mInvalidHeaderError\u001b[0m Traceback (most recent call last)",
|
120 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnext\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 2288\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2289\u001b[1;33m \u001b[0mtarinfo\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtarinfo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfromtarfile\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2290\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mEOFHeaderError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
121 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mfromtarfile\u001b[1;34m(cls, tarfile)\u001b[0m\n\u001b[0;32m 1094\u001b[0m \u001b[0mbuf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfileobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mBLOCKSIZE\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1095\u001b[1;33m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrombuf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mencoding\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1096\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfileobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtell\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mBLOCKSIZE\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
122 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mfrombuf\u001b[1;34m(cls, buf, encoding, errors)\u001b[0m\n\u001b[0;32m 1036\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1037\u001b[1;33m \u001b[0mchksum\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnti\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m148\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m156\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1038\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mchksum\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mcalc_chksums\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
123 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnti\u001b[1;34m(s)\u001b[0m\n\u001b[0;32m 188\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 189\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mInvalidHeaderError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"invalid header\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 190\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
124 |
+
"\u001b[1;31mInvalidHeaderError\u001b[0m: invalid header",
|
125 |
+
"\nDuring handling of the above exception, another exception occurred:\n",
|
126 |
+
"\u001b[1;31mReadError\u001b[0m Traceback (most recent call last)",
|
127 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36m_load\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m 555\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 556\u001b[1;33m \u001b[0mstorage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 557\u001b[0m \u001b[0mstorage_dtype\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muint8\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
128 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mlegacy_load\u001b[1;34m(f)\u001b[0m\n\u001b[0;32m 466\u001b[0m \u001b[1;31m# and the tensor back up with no problems in _this_ and future\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 467\u001b[1;33m \u001b[1;31m# versions of pytorch, but in older versions, here's the problem:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 468\u001b[0m \u001b[1;31m# the storage will be loaded up as a _UntypedStorage, and then the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
129 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(cls, name, mode, fileobj, bufsize, **kwargs)\u001b[0m\n\u001b[0;32m 1590\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mCompressionError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"unknown compression type %r\"\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mcomptype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1591\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilemode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfileobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
130 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mtaropen\u001b[1;34m(cls, name, mode, fileobj, **kwargs)\u001b[0m\n\u001b[0;32m 1620\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"mode must be 'r', 'a', 'w' or 'x'\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1621\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfileobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1622\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
131 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, name, mode, fileobj, format, tarinfo, dereference, ignore_zeros, encoding, errors, pax_headers, debug, errorlevel, copybufsize)\u001b[0m\n\u001b[0;32m 1483\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfirstmember\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1484\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfirstmember\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1485\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
132 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnext\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 2300\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2301\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mReadError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2302\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mEmptyHeaderError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
133 |
+
"\u001b[1;31mReadError\u001b[0m: invalid header",
|
134 |
+
"\nDuring handling of the above exception, another exception occurred:\n",
|
135 |
+
"\u001b[1;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
136 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\modeling_utils.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[1;34m(checkpoint_file)\u001b[0m\n\u001b[0;32m 366\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 367\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint_file\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"cpu\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 368\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
137 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mload\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m 386\u001b[0m \u001b[0mserialized_container_types\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 387\u001b[1;33m \u001b[0mserialized_storages\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 388\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
138 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36m_load\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m 559\u001b[0m \u001b[0mstorage_numel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstorage\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnbytes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 560\u001b[1;33m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 561\u001b[0m \u001b[1;31m# If storage is allocated, ensure that any other saved storages\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
139 |
+
"\u001b[1;31mRuntimeError\u001b[0m: c:\\dev\\P\\gpt-neo-1.3B-fiction-novel-generation\\pytorch_model.bin is a zip archive (did you mean to use torch.jit.load()?)",
|
140 |
+
"\nDuring handling of the above exception, another exception occurred:\n",
|
141 |
+
"\u001b[1;31mMemoryError\u001b[0m Traceback (most recent call last)",
|
142 |
+
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_20996\\2464673473.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAutoModelForCausalLM\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mroot_dir\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
143 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\models\\auto\\auto_factory.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[0;32m 444\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_model_mapping\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 445\u001b[0m \u001b[0mmodel_class\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_get_model_class\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_model_mapping\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 446\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmodel_class\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 447\u001b[0m raise ValueError(\n\u001b[0;32m 448\u001b[0m \u001b[1;34mf\"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\\n\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
144 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\modeling_utils.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[0;32m 2065\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mis_sharded\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mstate_dict\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2066\u001b[0m \u001b[1;31m# Time to load the checkpoint\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2067\u001b[1;33m \u001b[0mstate_dict\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_state_dict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresolved_archive_file\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2068\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2069\u001b[0m \u001b[1;31m# set dtype to instantiate the model under:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
145 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\modeling_utils.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[1;34m(checkpoint_file)\u001b[0m\n\u001b[0;32m 369\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 370\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint_file\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 371\u001b[1;33m \u001b[1;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"version\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 372\u001b[0m raise OSError(\n\u001b[0;32m 373\u001b[0m \u001b[1;34m\"You seem to have cloned a repository without having git-lfs installed. Please install \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
146 |
+
"\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\encodings\\cp1252.py\u001b[0m in \u001b[0;36mdecode\u001b[1;34m(self, input, final)\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mclass\u001b[0m \u001b[0mIncrementalDecoder\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcodecs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mIncrementalDecoder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mdecode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfinal\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mcodecs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcharmap_decode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mdecoding_table\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[1;32mclass\u001b[0m \u001b[0mStreamWriter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mCodec\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mcodecs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mStreamWriter\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
147 |
+
"\u001b[1;31mMemoryError\u001b[0m: "
|
148 |
+
]
|
149 |
+
}
|
150 |
+
],
|
151 |
+
"source": [
|
152 |
+
"model = AutoModelForCausalLM.from_pretrained(root_dir)"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "markdown",
|
157 |
+
"metadata": {},
|
158 |
+
"source": [
|
159 |
+
"# Inference Example"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "markdown",
|
164 |
+
"metadata": {},
|
165 |
+
"source": [
|
166 |
+
"## Model Usage"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [],
|
174 |
+
"source": [
|
175 |
+
"inputs = tokenizer('Hello, my dog is cute', return_tensors='pt')\n",
|
176 |
+
"outputs = model(**inputs, labels=inputs['input_ids'])\n",
|
177 |
+
"\n",
|
178 |
+
"print(f'[OUTPUT] {outputs}')"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "markdown",
|
183 |
+
"metadata": {},
|
184 |
+
"source": [
|
185 |
+
"## Valuation"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": null,
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"loss = outputs.loss\n",
|
195 |
+
"logits = outputs.logits\n",
|
196 |
+
"\n",
|
197 |
+
"print(f'[LOSS] {loss}, [LOGITS] {logits}')"
|
198 |
+
]
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"metadata": {
|
202 |
+
"kernelspec": {
|
203 |
+
"display_name": "Python 3.7.3 ('pytorchenv')",
|
204 |
+
"language": "python",
|
205 |
+
"name": "python3"
|
206 |
+
},
|
207 |
+
"language_info": {
|
208 |
+
"codemirror_mode": {
|
209 |
+
"name": "ipython",
|
210 |
+
"version": 3
|
211 |
+
},
|
212 |
+
"file_extension": ".py",
|
213 |
+
"mimetype": "text/x-python",
|
214 |
+
"name": "python",
|
215 |
+
"nbconvert_exporter": "python",
|
216 |
+
"pygments_lexer": "ipython3",
|
217 |
+
"version": "3.7.3"
|
218 |
+
},
|
219 |
+
"orig_nbformat": 4,
|
220 |
+
"vscode": {
|
221 |
+
"interpreter": {
|
222 |
+
"hash": "a1f58ad6df42b3a9f00d8caf282612c40ca90330c75003a8465db9aa3eb9729c"
|
223 |
+
}
|
224 |
+
}
|
225 |
+
},
|
226 |
+
"nbformat": 4,
|
227 |
+
"nbformat_minor": 2
|
228 |
+
}
|