Upload 6 files
Browse files- README.md +57 -0
- config.json +24 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- vi
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
pipeline_tag: token-classification
|
7 |
+
tags:
|
8 |
+
- transformer
|
9 |
+
- vietnamese
|
10 |
+
- nlp
|
11 |
+
- bert
|
12 |
+
- deberta
|
13 |
+
- deberta-v3
|
14 |
+
---
|
15 |
+
|
16 |
+
# ViDeBERTa: A powerful pre-trained language model for Vietnamese
|
17 |
+
|
18 |
+
|
19 |
+
ViDeBERTa, a new pre-trained monolingual language model for Vietnamese,
|
20 |
+
with three versions - ViDeBERTa_xsmall, ViDeBERTa_base, and ViDeBERTa_large,
|
21 |
+
which are pre-trained on 138GB of Vietnamese text of high-quality and diverse Vietnamese text using DeBERTaV3 architecture.
|
22 |
+
|
23 |
+
Please check the [official repository][github] for more implementation details and updates
|
24 |
+
|
25 |
+
The DeBERTa V3 xsmall model comes with 12 layers and a hidden size
|
26 |
+
of 384. It has only 22M backbone parameters with a vocabulary
|
27 |
+
containing 128K tokens which introduces 48M parameters in the
|
28 |
+
Embedding layer. This model was trained using CC100 dataset, which consists of 138 GB of Vietnamese text.
|
29 |
+
|
30 |
+
## Fine-tuning on NLU tasks
|
31 |
+
We present the dev results on VLSP POS, PhoNER, ViQuAD dataset.
|
32 |
+
|
33 |
+
| Model|#Params(M)| POS | NER | MRC |
|
34 |
+
|-----------|-------|---------|-----|----------|
|
35 |
+
| XLM-R-base | 125M | 96.2 | - | 82.0 |
|
36 |
+
| XLM-R-large | 355M | 96.3 | 93.8 | 87.0 |
|
37 |
+
| PhoBERT-base | 135M | 96.7 | 80.1 |
|
38 |
+
| PhoBERT-large | 370M | 96.8 | 83.5 |
|
39 |
+
| ViT5-base | 310M | - | 94.5 | - |
|
40 |
+
| ViT5-large | 866M | - | 93.8 | - |
|
41 |
+
| **ViDeBERTa-xsmall** | **22M** | **96.4** | **93.6** | **81.3** |
|
42 |
+
| ViDeBERTa-base | 86M | 96.8 | 94.5 | 85.7 |
|
43 |
+
| ViDeBERTa-large | 304M | 97.2 | 95.3 | 89.9 |
|
44 |
+
|
45 |
+
## Citation
|
46 |
+
If you find ViDeBERTa useful for your work, please cite the following papers:
|
47 |
+
```latex
|
48 |
+
@article{dao2023videberta,
|
49 |
+
title={ViDeBERTa: A powerful pre-trained language model for Vietnamese},
|
50 |
+
author={Dao Tran, Cong and Pham, Nhut Huy and Nguyen, Anh and Son Hy, Truong and Vu, Tu},
|
51 |
+
journal={arXiv e-prints},
|
52 |
+
pages={arXiv--2301},
|
53 |
+
year={2023}
|
54 |
+
}
|
55 |
+
```
|
56 |
+
|
57 |
+
[github]: https://github.com/HySonLab/ViDeBERTa
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_head_size": 64,
|
3 |
+
"attention_probs_dropout_prob": 0.1,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 768,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 3072,
|
9 |
+
"layer_norm_eps": 1e-07,
|
10 |
+
"max_position_embeddings": 512,
|
11 |
+
"max_relative_positions": -1,
|
12 |
+
"model_type": "deberta-v2",
|
13 |
+
"norm_rel_ebd": "layer_norm",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pos_att_type": "p2c|c2p",
|
17 |
+
"position_biased_input": false,
|
18 |
+
"position_buckets": 256,
|
19 |
+
"relative_attention": true,
|
20 |
+
"share_att_key": true,
|
21 |
+
"type_vocab_size": 0,
|
22 |
+
"vocab_size": 128000
|
23 |
+
}
|
24 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:535b69f2c722ea7dc0415bded1044861cba90ad0962863167fadbff2cc394ecc
|
3 |
+
size 566908530
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": false,
|
5 |
+
"eos_token": "[SEP]",
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"name_or_path": "microsoft/deberta-v3-xsmall",
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"sp_model_kwargs": {},
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"split_by_punct": false,
|
13 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
14 |
+
"unk_token": "[UNK]",
|
15 |
+
"vocab_type": "spm"
|
16 |
+
}
|