Funnyworld1412
commited on
Commit
•
73b23f8
1
Parent(s):
5640f2e
Add SetFit ABSA model
Browse files- 1_Pooling/config.json +10 -0
- README.md +473 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
widget:
|
13 |
+
- text: hp:game yg grafiknya standar boros batrai bikin hp cepat panas game satunya
|
14 |
+
brawlstar ga
|
15 |
+
- text: game:game cocok indonesia gw main game dibilang berat squad buster jaringan
|
16 |
+
game berat bagus squad buster main koneksi terputus koneksi aman aman aja mohon
|
17 |
+
perbaiki jaringan
|
18 |
+
- text: sinyal:prmainannya bagus sinyal diperbaiki maen game online gak bagus2 aja
|
19 |
+
pingnya eh maen squad busters jaringannya hilang2 pas match klok sinyal udah hilang
|
20 |
+
masuk tulisan server konek muat ulang gak masuk in game saran tolong diperbaiki
|
21 |
+
ya min klok grafik gameplay udah bagus
|
22 |
+
- text: saran semoga game:gamenya bagus kendala game nya kadang kadang suka jaringan
|
23 |
+
jaringan bagus saran semoga game nya ditingkatkan disaat update
|
24 |
+
- text: gameplay:gameplay nya bagus gk match nya optimal main kadang suka lag gitu
|
25 |
+
sinyal nya bagus tolong supercell perbaiki sinyal
|
26 |
+
pipeline_tag: text-classification
|
27 |
+
inference: false
|
28 |
+
model-index:
|
29 |
+
- name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
type: text-classification
|
33 |
+
name: Text Classification
|
34 |
+
dataset:
|
35 |
+
name: Unknown
|
36 |
+
type: unknown
|
37 |
+
split: test
|
38 |
+
metrics:
|
39 |
+
- type: accuracy
|
40 |
+
value: 0.8307086614173228
|
41 |
+
name: Accuracy
|
42 |
+
---
|
43 |
+
|
44 |
+
# SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
|
45 |
+
|
46 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
47 |
+
|
48 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
49 |
+
|
50 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
51 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
52 |
+
|
53 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
54 |
+
|
55 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
56 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
57 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
58 |
+
|
59 |
+
## Model Details
|
60 |
+
|
61 |
+
### Model Description
|
62 |
+
- **Model Type:** SetFit
|
63 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
64 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
65 |
+
- **spaCy Model:** id_core_news_trf
|
66 |
+
- **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect](https://huggingface.co/Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect)
|
67 |
+
- **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity](https://huggingface.co/Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity)
|
68 |
+
- **Maximum Sequence Length:** 256 tokens
|
69 |
+
- **Number of Classes:** 2 classes
|
70 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
71 |
+
<!-- - **Language:** Unknown -->
|
72 |
+
<!-- - **License:** Unknown -->
|
73 |
+
|
74 |
+
### Model Sources
|
75 |
+
|
76 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
77 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
78 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
79 |
+
|
80 |
+
### Model Labels
|
81 |
+
| Label | Examples |
|
82 |
+
|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
83 |
+
| aspect | <ul><li>'pencarian lawan:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'game:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'bugnya:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> |
|
84 |
+
| no aspect | <ul><li>'player trophy mahkotanya jaraknya:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'peleton akun perbedaan level:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'y coc cr:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> |
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
### Metrics
|
89 |
+
| Label | Accuracy |
|
90 |
+
|:--------|:---------|
|
91 |
+
| **all** | 0.8307 |
|
92 |
+
|
93 |
+
## Uses
|
94 |
+
|
95 |
+
### Direct Use for Inference
|
96 |
+
|
97 |
+
First install the SetFit library:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
pip install setfit
|
101 |
+
```
|
102 |
+
|
103 |
+
Then you can load this model and run inference.
|
104 |
+
|
105 |
+
```python
|
106 |
+
from setfit import AbsaModel
|
107 |
+
|
108 |
+
# Download from the 🤗 Hub
|
109 |
+
model = AbsaModel.from_pretrained(
|
110 |
+
"Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect",
|
111 |
+
"Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity",
|
112 |
+
)
|
113 |
+
# Run inference
|
114 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
115 |
+
```
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Downstream Use
|
119 |
+
|
120 |
+
*List how someone could finetune this model on their own dataset.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Out-of-Scope Use
|
125 |
+
|
126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
## Bias, Risks and Limitations
|
131 |
+
|
132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Recommendations
|
137 |
+
|
138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
## Training Details
|
142 |
+
|
143 |
+
### Training Set Metrics
|
144 |
+
| Training set | Min | Median | Max |
|
145 |
+
|:-------------|:----|:--------|:----|
|
146 |
+
| Word count | 2 | 29.9357 | 80 |
|
147 |
+
|
148 |
+
| Label | Training Sample Count |
|
149 |
+
|:----------|:----------------------|
|
150 |
+
| no aspect | 3834 |
|
151 |
+
| aspect | 1266 |
|
152 |
+
|
153 |
+
### Training Hyperparameters
|
154 |
+
- batch_size: (4, 4)
|
155 |
+
- num_epochs: (1, 1)
|
156 |
+
- max_steps: -1
|
157 |
+
- sampling_strategy: oversampling
|
158 |
+
- num_iterations: 5
|
159 |
+
- body_learning_rate: (2e-05, 1e-05)
|
160 |
+
- head_learning_rate: 0.01
|
161 |
+
- loss: CosineSimilarityLoss
|
162 |
+
- distance_metric: cosine_distance
|
163 |
+
- margin: 0.25
|
164 |
+
- end_to_end: False
|
165 |
+
- use_amp: False
|
166 |
+
- warmup_proportion: 0.1
|
167 |
+
- seed: 42
|
168 |
+
- eval_max_steps: -1
|
169 |
+
- load_best_model_at_end: False
|
170 |
+
|
171 |
+
### Training Results
|
172 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
173 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
174 |
+
| 0.0001 | 1 | 0.2715 | - |
|
175 |
+
| 0.0039 | 50 | 0.2364 | - |
|
176 |
+
| 0.0078 | 100 | 0.1076 | - |
|
177 |
+
| 0.0118 | 150 | 0.3431 | - |
|
178 |
+
| 0.0157 | 200 | 0.2411 | - |
|
179 |
+
| 0.0196 | 250 | 0.361 | - |
|
180 |
+
| 0.0235 | 300 | 0.2227 | - |
|
181 |
+
| 0.0275 | 350 | 0.2087 | - |
|
182 |
+
| 0.0314 | 400 | 0.1956 | - |
|
183 |
+
| 0.0353 | 450 | 0.2815 | - |
|
184 |
+
| 0.0392 | 500 | 0.1844 | - |
|
185 |
+
| 0.0431 | 550 | 0.2053 | - |
|
186 |
+
| 0.0471 | 600 | 0.2884 | - |
|
187 |
+
| 0.0510 | 650 | 0.1043 | - |
|
188 |
+
| 0.0549 | 700 | 0.2074 | - |
|
189 |
+
| 0.0588 | 750 | 0.1627 | - |
|
190 |
+
| 0.0627 | 800 | 0.3 | - |
|
191 |
+
| 0.0667 | 850 | 0.1658 | - |
|
192 |
+
| 0.0706 | 900 | 0.1582 | - |
|
193 |
+
| 0.0745 | 950 | 0.2692 | - |
|
194 |
+
| 0.0784 | 1000 | 0.1823 | - |
|
195 |
+
| 0.0824 | 1050 | 0.4098 | - |
|
196 |
+
| 0.0863 | 1100 | 0.1992 | - |
|
197 |
+
| 0.0902 | 1150 | 0.0793 | - |
|
198 |
+
| 0.0941 | 1200 | 0.3924 | - |
|
199 |
+
| 0.0980 | 1250 | 0.0339 | - |
|
200 |
+
| 0.1020 | 1300 | 0.2236 | - |
|
201 |
+
| 0.1059 | 1350 | 0.2262 | - |
|
202 |
+
| 0.1098 | 1400 | 0.111 | - |
|
203 |
+
| 0.1137 | 1450 | 0.0223 | - |
|
204 |
+
| 0.1176 | 1500 | 0.3994 | - |
|
205 |
+
| 0.1216 | 1550 | 0.0417 | - |
|
206 |
+
| 0.1255 | 1600 | 0.3319 | - |
|
207 |
+
| 0.1294 | 1650 | 0.3223 | - |
|
208 |
+
| 0.1333 | 1700 | 0.2943 | - |
|
209 |
+
| 0.1373 | 1750 | 0.1273 | - |
|
210 |
+
| 0.1412 | 1800 | 0.2863 | - |
|
211 |
+
| 0.1451 | 1850 | 0.0988 | - |
|
212 |
+
| 0.1490 | 1900 | 0.1593 | - |
|
213 |
+
| 0.1529 | 1950 | 0.2209 | - |
|
214 |
+
| 0.1569 | 2000 | 0.5017 | - |
|
215 |
+
| 0.1608 | 2050 | 0.1392 | - |
|
216 |
+
| 0.1647 | 2100 | 0.1372 | - |
|
217 |
+
| 0.1686 | 2150 | 0.3491 | - |
|
218 |
+
| 0.1725 | 2200 | 0.2693 | - |
|
219 |
+
| 0.1765 | 2250 | 0.1988 | - |
|
220 |
+
| 0.1804 | 2300 | 0.2765 | - |
|
221 |
+
| 0.1843 | 2350 | 0.238 | - |
|
222 |
+
| 0.1882 | 2400 | 0.0577 | - |
|
223 |
+
| 0.1922 | 2450 | 0.2253 | - |
|
224 |
+
| 0.1961 | 2500 | 0.16 | - |
|
225 |
+
| 0.2 | 2550 | 0.0262 | - |
|
226 |
+
| 0.2039 | 2600 | 0.0099 | - |
|
227 |
+
| 0.2078 | 2650 | 0.0132 | - |
|
228 |
+
| 0.2118 | 2700 | 0.2356 | - |
|
229 |
+
| 0.2157 | 2750 | 0.2975 | - |
|
230 |
+
| 0.2196 | 2800 | 0.154 | - |
|
231 |
+
| 0.2235 | 2850 | 0.0308 | - |
|
232 |
+
| 0.2275 | 2900 | 0.0497 | - |
|
233 |
+
| 0.2314 | 2950 | 0.0523 | - |
|
234 |
+
| 0.2353 | 3000 | 0.158 | - |
|
235 |
+
| 0.2392 | 3050 | 0.0473 | - |
|
236 |
+
| 0.2431 | 3100 | 0.208 | - |
|
237 |
+
| 0.2471 | 3150 | 0.2126 | - |
|
238 |
+
| 0.2510 | 3200 | 0.081 | - |
|
239 |
+
| 0.2549 | 3250 | 0.0134 | - |
|
240 |
+
| 0.2588 | 3300 | 0.1107 | - |
|
241 |
+
| 0.2627 | 3350 | 0.0249 | - |
|
242 |
+
| 0.2667 | 3400 | 0.0259 | - |
|
243 |
+
| 0.2706 | 3450 | 0.1008 | - |
|
244 |
+
| 0.2745 | 3500 | 0.0335 | - |
|
245 |
+
| 0.2784 | 3550 | 0.0119 | - |
|
246 |
+
| 0.2824 | 3600 | 0.2982 | - |
|
247 |
+
| 0.2863 | 3650 | 0.1516 | - |
|
248 |
+
| 0.2902 | 3700 | 0.1217 | - |
|
249 |
+
| 0.2941 | 3750 | 0.1558 | - |
|
250 |
+
| 0.2980 | 3800 | 0.0359 | - |
|
251 |
+
| 0.3020 | 3850 | 0.0215 | - |
|
252 |
+
| 0.3059 | 3900 | 0.2906 | - |
|
253 |
+
| 0.3098 | 3950 | 0.0599 | - |
|
254 |
+
| 0.3137 | 4000 | 0.1528 | - |
|
255 |
+
| 0.3176 | 4050 | 0.0144 | - |
|
256 |
+
| 0.3216 | 4100 | 0.298 | - |
|
257 |
+
| 0.3255 | 4150 | 0.0174 | - |
|
258 |
+
| 0.3294 | 4200 | 0.0093 | - |
|
259 |
+
| 0.3333 | 4250 | 0.0329 | - |
|
260 |
+
| 0.3373 | 4300 | 0.1795 | - |
|
261 |
+
| 0.3412 | 4350 | 0.0712 | - |
|
262 |
+
| 0.3451 | 4400 | 0.3703 | - |
|
263 |
+
| 0.3490 | 4450 | 0.0873 | - |
|
264 |
+
| 0.3529 | 4500 | 0.3223 | - |
|
265 |
+
| 0.3569 | 4550 | 0.0045 | - |
|
266 |
+
| 0.3608 | 4600 | 0.2188 | - |
|
267 |
+
| 0.3647 | 4650 | 0.0085 | - |
|
268 |
+
| 0.3686 | 4700 | 0.2089 | - |
|
269 |
+
| 0.3725 | 4750 | 0.0052 | - |
|
270 |
+
| 0.3765 | 4800 | 0.1459 | - |
|
271 |
+
| 0.3804 | 4850 | 0.0711 | - |
|
272 |
+
| 0.3843 | 4900 | 0.4268 | - |
|
273 |
+
| 0.3882 | 4950 | 0.1842 | - |
|
274 |
+
| 0.3922 | 5000 | 0.1661 | - |
|
275 |
+
| 0.3961 | 5050 | 0.1028 | - |
|
276 |
+
| 0.4 | 5100 | 0.067 | - |
|
277 |
+
| 0.4039 | 5150 | 0.1708 | - |
|
278 |
+
| 0.4078 | 5200 | 0.1001 | - |
|
279 |
+
| 0.4118 | 5250 | 0.065 | - |
|
280 |
+
| 0.4157 | 5300 | 0.0279 | - |
|
281 |
+
| 0.4196 | 5350 | 0.1101 | - |
|
282 |
+
| 0.4235 | 5400 | 0.1923 | - |
|
283 |
+
| 0.4275 | 5450 | 0.5491 | - |
|
284 |
+
| 0.4314 | 5500 | 0.0726 | - |
|
285 |
+
| 0.4353 | 5550 | 0.0085 | - |
|
286 |
+
| 0.4392 | 5600 | 0.194 | - |
|
287 |
+
| 0.4431 | 5650 | 0.2527 | - |
|
288 |
+
| 0.4471 | 5700 | 0.7134 | - |
|
289 |
+
| 0.4510 | 5750 | 0.4542 | - |
|
290 |
+
| 0.4549 | 5800 | 0.2779 | - |
|
291 |
+
| 0.4588 | 5850 | 0.1024 | - |
|
292 |
+
| 0.4627 | 5900 | 0.2483 | - |
|
293 |
+
| 0.4667 | 5950 | 0.0163 | - |
|
294 |
+
| 0.4706 | 6000 | 0.0095 | - |
|
295 |
+
| 0.4745 | 6050 | 0.2902 | - |
|
296 |
+
| 0.4784 | 6100 | 0.0111 | - |
|
297 |
+
| 0.4824 | 6150 | 0.0296 | - |
|
298 |
+
| 0.4863 | 6200 | 0.3792 | - |
|
299 |
+
| 0.4902 | 6250 | 0.4387 | - |
|
300 |
+
| 0.4941 | 6300 | 0.1547 | - |
|
301 |
+
| 0.4980 | 6350 | 0.0617 | - |
|
302 |
+
| 0.5020 | 6400 | 0.1384 | - |
|
303 |
+
| 0.5059 | 6450 | 0.0677 | - |
|
304 |
+
| 0.5098 | 6500 | 0.0454 | - |
|
305 |
+
| 0.5137 | 6550 | 0.0074 | - |
|
306 |
+
| 0.5176 | 6600 | 0.1994 | - |
|
307 |
+
| 0.5216 | 6650 | 0.0168 | - |
|
308 |
+
| 0.5255 | 6700 | 0.0416 | - |
|
309 |
+
| 0.5294 | 6750 | 0.1898 | - |
|
310 |
+
| 0.5333 | 6800 | 0.0207 | - |
|
311 |
+
| 0.5373 | 6850 | 0.1046 | - |
|
312 |
+
| 0.5412 | 6900 | 0.1994 | - |
|
313 |
+
| 0.5451 | 6950 | 0.0435 | - |
|
314 |
+
| 0.5490 | 7000 | 0.0149 | - |
|
315 |
+
| 0.5529 | 7050 | 0.0067 | - |
|
316 |
+
| 0.5569 | 7100 | 0.0122 | - |
|
317 |
+
| 0.5608 | 7150 | 0.2406 | - |
|
318 |
+
| 0.5647 | 7200 | 0.4473 | - |
|
319 |
+
| 0.5686 | 7250 | 0.0469 | - |
|
320 |
+
| 0.5725 | 7300 | 0.1782 | - |
|
321 |
+
| 0.5765 | 7350 | 0.3386 | - |
|
322 |
+
| 0.5804 | 7400 | 0.2804 | - |
|
323 |
+
| 0.5843 | 7450 | 0.0072 | - |
|
324 |
+
| 0.5882 | 7500 | 0.0451 | - |
|
325 |
+
| 0.5922 | 7550 | 0.0188 | - |
|
326 |
+
| 0.5961 | 7600 | 0.01 | - |
|
327 |
+
| 0.6 | 7650 | 0.0048 | - |
|
328 |
+
| 0.6039 | 7700 | 0.2349 | - |
|
329 |
+
| 0.6078 | 7750 | 0.2052 | - |
|
330 |
+
| 0.6118 | 7800 | 0.0838 | - |
|
331 |
+
| 0.6157 | 7850 | 0.3052 | - |
|
332 |
+
| 0.6196 | 7900 | 0.3667 | - |
|
333 |
+
| 0.6235 | 7950 | 0.0044 | - |
|
334 |
+
| 0.6275 | 8000 | 0.3612 | - |
|
335 |
+
| 0.6314 | 8050 | 0.2082 | - |
|
336 |
+
| 0.6353 | 8100 | 0.3384 | - |
|
337 |
+
| 0.6392 | 8150 | 0.022 | - |
|
338 |
+
| 0.6431 | 8200 | 0.0764 | - |
|
339 |
+
| 0.6471 | 8250 | 0.2879 | - |
|
340 |
+
| 0.6510 | 8300 | 0.1827 | - |
|
341 |
+
| 0.6549 | 8350 | 0.1104 | - |
|
342 |
+
| 0.6588 | 8400 | 0.2096 | - |
|
343 |
+
| 0.6627 | 8450 | 0.2103 | - |
|
344 |
+
| 0.6667 | 8500 | 0.0742 | - |
|
345 |
+
| 0.6706 | 8550 | 0.2186 | - |
|
346 |
+
| 0.6745 | 8600 | 0.0109 | - |
|
347 |
+
| 0.6784 | 8650 | 0.0326 | - |
|
348 |
+
| 0.6824 | 8700 | 0.3056 | - |
|
349 |
+
| 0.6863 | 8750 | 0.0941 | - |
|
350 |
+
| 0.6902 | 8800 | 0.3731 | - |
|
351 |
+
| 0.6941 | 8850 | 0.2185 | - |
|
352 |
+
| 0.6980 | 8900 | 0.0228 | - |
|
353 |
+
| 0.7020 | 8950 | 0.0141 | - |
|
354 |
+
| 0.7059 | 9000 | 0.2242 | - |
|
355 |
+
| 0.7098 | 9050 | 0.3303 | - |
|
356 |
+
| 0.7137 | 9100 | 0.2383 | - |
|
357 |
+
| 0.7176 | 9150 | 0.0026 | - |
|
358 |
+
| 0.7216 | 9200 | 0.1718 | - |
|
359 |
+
| 0.7255 | 9250 | 0.053 | - |
|
360 |
+
| 0.7294 | 9300 | 0.0023 | - |
|
361 |
+
| 0.7333 | 9350 | 0.221 | - |
|
362 |
+
| 0.7373 | 9400 | 0.0021 | - |
|
363 |
+
| 0.7412 | 9450 | 0.2333 | - |
|
364 |
+
| 0.7451 | 9500 | 0.0565 | - |
|
365 |
+
| 0.7490 | 9550 | 0.0271 | - |
|
366 |
+
| 0.7529 | 9600 | 0.2156 | - |
|
367 |
+
| 0.7569 | 9650 | 0.2349 | - |
|
368 |
+
| 0.7608 | 9700 | 0.0047 | - |
|
369 |
+
| 0.7647 | 9750 | 0.1273 | - |
|
370 |
+
| 0.7686 | 9800 | 0.0139 | - |
|
371 |
+
| 0.7725 | 9850 | 0.0231 | - |
|
372 |
+
| 0.7765 | 9900 | 0.0048 | - |
|
373 |
+
| 0.7804 | 9950 | 0.0022 | - |
|
374 |
+
| 0.7843 | 10000 | 0.0026 | - |
|
375 |
+
| 0.7882 | 10050 | 0.0223 | - |
|
376 |
+
| 0.7922 | 10100 | 0.5488 | - |
|
377 |
+
| 0.7961 | 10150 | 0.0281 | - |
|
378 |
+
| 0.8 | 10200 | 0.0999 | - |
|
379 |
+
| 0.8039 | 10250 | 0.2154 | - |
|
380 |
+
| 0.8078 | 10300 | 0.0109 | - |
|
381 |
+
| 0.8118 | 10350 | 0.0019 | - |
|
382 |
+
| 0.8157 | 10400 | 0.1264 | - |
|
383 |
+
| 0.8196 | 10450 | 0.0029 | - |
|
384 |
+
| 0.8235 | 10500 | 0.3785 | - |
|
385 |
+
| 0.8275 | 10550 | 0.0366 | - |
|
386 |
+
| 0.8314 | 10600 | 0.0527 | - |
|
387 |
+
| 0.8353 | 10650 | 0.2355 | - |
|
388 |
+
| 0.8392 | 10700 | 0.0833 | - |
|
389 |
+
| 0.8431 | 10750 | 0.1612 | - |
|
390 |
+
| 0.8471 | 10800 | 0.0071 | - |
|
391 |
+
| 0.8510 | 10850 | 0.1128 | - |
|
392 |
+
| 0.8549 | 10900 | 0.2521 | - |
|
393 |
+
| 0.8588 | 10950 | 0.0403 | - |
|
394 |
+
| 0.8627 | 11000 | 0.2196 | - |
|
395 |
+
| 0.8667 | 11050 | 0.1441 | - |
|
396 |
+
| 0.8706 | 11100 | 0.0295 | - |
|
397 |
+
| 0.8745 | 11150 | 0.0047 | - |
|
398 |
+
| 0.8784 | 11200 | 0.3089 | - |
|
399 |
+
| 0.8824 | 11250 | 0.1055 | - |
|
400 |
+
| 0.8863 | 11300 | 0.0064 | - |
|
401 |
+
| 0.8902 | 11350 | 0.2119 | - |
|
402 |
+
| 0.8941 | 11400 | 0.2145 | - |
|
403 |
+
| 0.8980 | 11450 | 0.0128 | - |
|
404 |
+
| 0.9020 | 11500 | 0.0086 | - |
|
405 |
+
| 0.9059 | 11550 | 0.1803 | - |
|
406 |
+
| 0.9098 | 11600 | 0.2277 | - |
|
407 |
+
| 0.9137 | 11650 | 0.0204 | - |
|
408 |
+
| 0.9176 | 11700 | 0.0105 | - |
|
409 |
+
| 0.9216 | 11750 | 0.005 | - |
|
410 |
+
| 0.9255 | 11800 | 0.0099 | - |
|
411 |
+
| 0.9294 | 11850 | 0.004 | - |
|
412 |
+
| 0.9333 | 11900 | 0.1824 | - |
|
413 |
+
| 0.9373 | 11950 | 0.0021 | - |
|
414 |
+
| 0.9412 | 12000 | 0.2231 | - |
|
415 |
+
| 0.9451 | 12050 | 0.0017 | - |
|
416 |
+
| 0.9490 | 12100 | 0.0752 | - |
|
417 |
+
| 0.9529 | 12150 | 0.0129 | - |
|
418 |
+
| 0.9569 | 12200 | 0.1644 | - |
|
419 |
+
| 0.9608 | 12250 | 0.0305 | - |
|
420 |
+
| 0.9647 | 12300 | 0.0133 | - |
|
421 |
+
| 0.9686 | 12350 | 0.0687 | - |
|
422 |
+
| 0.9725 | 12400 | 0.0039 | - |
|
423 |
+
| 0.9765 | 12450 | 0.1179 | - |
|
424 |
+
| 0.9804 | 12500 | 0.1867 | - |
|
425 |
+
| 0.9843 | 12550 | 0.0225 | - |
|
426 |
+
| 0.9882 | 12600 | 0.1914 | - |
|
427 |
+
| 0.9922 | 12650 | 0.0592 | - |
|
428 |
+
| 0.9961 | 12700 | 0.0059 | - |
|
429 |
+
| 1.0 | 12750 | 0.1016 | 0.2295 |
|
430 |
+
|
431 |
+
### Framework Versions
|
432 |
+
- Python: 3.10.13
|
433 |
+
- SetFit: 1.0.3
|
434 |
+
- Sentence Transformers: 3.0.1
|
435 |
+
- spaCy: 3.7.5
|
436 |
+
- Transformers: 4.36.2
|
437 |
+
- PyTorch: 2.1.2
|
438 |
+
- Datasets: 2.19.2
|
439 |
+
- Tokenizers: 0.15.2
|
440 |
+
|
441 |
+
## Citation
|
442 |
+
|
443 |
+
### BibTeX
|
444 |
+
```bibtex
|
445 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
446 |
+
doi = {10.48550/ARXIV.2209.11055},
|
447 |
+
url = {https://arxiv.org/abs/2209.11055},
|
448 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
449 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
450 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
451 |
+
publisher = {arXiv},
|
452 |
+
year = {2022},
|
453 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
454 |
+
}
|
455 |
+
```
|
456 |
+
|
457 |
+
<!--
|
458 |
+
## Glossary
|
459 |
+
|
460 |
+
*Clearly define terms in order to be accessible across audiences.*
|
461 |
+
-->
|
462 |
+
|
463 |
+
<!--
|
464 |
+
## Model Card Authors
|
465 |
+
|
466 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
467 |
+
-->
|
468 |
+
|
469 |
+
<!--
|
470 |
+
## Model Card Contact
|
471 |
+
|
472 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
473 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.36.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.36.2",
|
5 |
+
"pytorch": "2.1.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"no aspect",
|
5 |
+
"aspect"
|
6 |
+
],
|
7 |
+
"span_context": 0,
|
8 |
+
"spacy_model": "id_core_news_trf"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1967209df9055c0c248fe4b66d5f618833ef5e893dff3a34a8e0e4177ee47d9
|
3 |
+
size 90864192
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf44ab0efcf18c4c6b182add11ee48df8ddf8a4339d68587aa27d3a17c4d1422
|
3 |
+
size 3919
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|