Funnyworld1412 commited on
Commit
a5e2656
1 Parent(s): f4728cf

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: firqaaa/indo-sentence-bert-large
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: gamenya seru bagus paket:gamenya seru bagus paket worth it gak lag mudah mainnya
14
+ tugas hadiah bagus modenya sayangnya game kadang ngebug gapapa kasih
15
+ - text: tolong perbaiki analog nya pengaturan posisi:tolong perbaiki analog nya pengaturan
16
+ posisi berpindah pindah
17
+ - text: visualisasi bagus segi graphic:visualisasi bagus segi graphic bagus ya game
18
+ cocok sih mantra nya banyakin contoh mantra penghilang
19
+ - text: jaringan udah bagus game jaringan nya bagus:game nya udah bagus jaringan game
20
+ nya bermasalah jaringan udah bagus game jaringan nya bagus mohon nambahin karakter
21
+ - text: kali game stuk loading server pakai jaringan:game bagus cma kendala kali game
22
+ stuk loading server pakai jaringan wifi masuk jaringan jaringan bermasalah main
23
+ game online lancar game susah akses tolong diperbaiki supercell detik bermain
24
+ coc lancar masuk kendala
25
+ pipeline_tag: text-classification
26
+ inference: false
27
+ model-index:
28
+ - name: SetFit Polarity Model with firqaaa/indo-sentence-bert-large
29
+ results:
30
+ - task:
31
+ type: text-classification
32
+ name: Text Classification
33
+ dataset:
34
+ name: Unknown
35
+ type: unknown
36
+ split: test
37
+ metrics:
38
+ - type: accuracy
39
+ value: 0.8677536231884058
40
+ name: Accuracy
41
+ ---
42
+
43
+ # SetFit Polarity Model with firqaaa/indo-sentence-bert-large
44
+
45
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-sentence-bert-large](https://huggingface.co/firqaaa/indo-sentence-bert-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
46
+
47
+ The model has been trained using an efficient few-shot learning technique that involves:
48
+
49
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
50
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
51
+
52
+ This model was trained within the context of a larger system for ABSA, which looks like so:
53
+
54
+ 1. Use a spaCy model to select possible aspect span candidates.
55
+ 2. Use a SetFit model to filter these possible aspect span candidates.
56
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
57
+
58
+ ## Model Details
59
+
60
+ ### Model Description
61
+ - **Model Type:** SetFit
62
+ - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-large](https://huggingface.co/firqaaa/indo-sentence-bert-large)
63
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
64
+ - **spaCy Model:** id_core_news_trf
65
+ - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect](https://huggingface.co/Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect)
66
+ - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity](https://huggingface.co/Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity)
67
+ - **Maximum Sequence Length:** 512 tokens
68
+ - **Number of Classes:** 2 classes
69
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
76
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
77
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
78
+
79
+ ### Model Labels
80
+ | Label | Examples |
81
+ |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
82
+ | negatif | <ul><li>'seru tolong diperbaiki pencarian lawan bermain ketemu player:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'bugnya nakal banget y:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li><li>'kadang g setara levelnya dahlah gk suka:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> |
83
+ | positif | <ul><li>'kapada supercell game nya bagus seru:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'fairrrr mending uninstall gamenya maen game yg:overall gamenya bagus pencarian match dikasih musuh yg levelnya levelku yg pertandingan fair menganggu kenyamanan pemainnya kalo nyariin musuh gapapa nyarinya kasih yg fair levelnya gaush buru buru ngasih yg gak fairrrr pas arena 4 udh dikasih musuh yg pletonnya 2 yg level 11 gak fairrrr mending uninstall gamenya maen game yg yg org gak fairr'</li><li>'gameplay menyenangkan pemain afk:gameplay menyenangkan pemain afk pertengahan menyerah 2vs2 mode mengganggu tolong tambahkan fitur lapor pemain'</li></ul> |
84
+
85
+ ## Evaluation
86
+
87
+ ### Metrics
88
+ | Label | Accuracy |
89
+ |:--------|:---------|
90
+ | **all** | 0.8678 |
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use for Inference
95
+
96
+ First install the SetFit library:
97
+
98
+ ```bash
99
+ pip install setfit
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+
104
+ ```python
105
+ from setfit import AbsaModel
106
+
107
+ # Download from the 🤗 Hub
108
+ model = AbsaModel.from_pretrained(
109
+ "Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect",
110
+ "Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity",
111
+ )
112
+ # Run inference
113
+ preds = model("The food was great, but the venue is just way too busy.")
114
+ ```
115
+
116
+ <!--
117
+ ### Downstream Use
118
+
119
+ *List how someone could finetune this model on their own dataset.*
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Set Metrics
143
+ | Training set | Min | Median | Max |
144
+ |:-------------|:----|:--------|:----|
145
+ | Word count | 3 | 28.3626 | 83 |
146
+
147
+ | Label | Training Sample Count |
148
+ |:--------|:----------------------|
149
+ | negatif | 738 |
150
+ | positif | 528 |
151
+
152
+ ### Training Hyperparameters
153
+ - batch_size: (4, 4)
154
+ - num_epochs: (1, 1)
155
+ - max_steps: -1
156
+ - sampling_strategy: oversampling
157
+ - num_iterations: 5
158
+ - body_learning_rate: (2e-05, 1e-05)
159
+ - head_learning_rate: 0.01
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - seed: 42
167
+ - eval_max_steps: -1
168
+ - load_best_model_at_end: False
169
+
170
+ ### Training Results
171
+ | Epoch | Step | Training Loss | Validation Loss |
172
+ |:------:|:----:|:-------------:|:---------------:|
173
+ | 0.0003 | 1 | 0.2752 | - |
174
+ | 0.0158 | 50 | 0.2227 | - |
175
+ | 0.0316 | 100 | 0.2989 | - |
176
+ | 0.0474 | 150 | 0.2169 | - |
177
+ | 0.0632 | 200 | 0.2081 | - |
178
+ | 0.0790 | 250 | 0.0653 | - |
179
+ | 0.0948 | 300 | 0.3878 | - |
180
+ | 0.1106 | 350 | 0.0675 | - |
181
+ | 0.1264 | 400 | 0.0096 | - |
182
+ | 0.1422 | 450 | 0.2128 | - |
183
+ | 0.1580 | 500 | 0.028 | - |
184
+ | 0.1738 | 550 | 0.177 | - |
185
+ | 0.1896 | 600 | 0.006 | - |
186
+ | 0.2054 | 650 | 0.0159 | - |
187
+ | 0.2212 | 700 | 0.2219 | - |
188
+ | 0.2370 | 750 | 0.0085 | - |
189
+ | 0.2528 | 800 | 0.0202 | - |
190
+ | 0.2686 | 850 | 0.0174 | - |
191
+ | 0.2844 | 900 | 0.1191 | - |
192
+ | 0.3002 | 950 | 0.0645 | - |
193
+ | 0.3160 | 1000 | 0.004 | - |
194
+ | 0.3318 | 1050 | 0.0132 | - |
195
+ | 0.3476 | 1100 | 0.0036 | - |
196
+ | 0.3633 | 1150 | 0.0056 | - |
197
+ | 0.3791 | 1200 | 0.0074 | - |
198
+ | 0.3949 | 1250 | 0.0012 | - |
199
+ | 0.4107 | 1300 | 0.0024 | - |
200
+ | 0.4265 | 1350 | 0.0028 | - |
201
+ | 0.4423 | 1400 | 0.0011 | - |
202
+ | 0.4581 | 1450 | 0.1069 | - |
203
+ | 0.4739 | 1500 | 0.0013 | - |
204
+ | 0.4897 | 1550 | 0.0006 | - |
205
+ | 0.5055 | 1600 | 0.0012 | - |
206
+ | 0.5213 | 1650 | 0.1649 | - |
207
+ | 0.5371 | 1700 | 0.0019 | - |
208
+ | 0.5529 | 1750 | 0.0016 | - |
209
+ | 0.5687 | 1800 | 0.2247 | - |
210
+ | 0.5845 | 1850 | 0.0019 | - |
211
+ | 0.6003 | 1900 | 0.0131 | - |
212
+ | 0.6161 | 1950 | 0.0008 | - |
213
+ | 0.6319 | 2000 | 0.0006 | - |
214
+ | 0.6477 | 2050 | 0.0008 | - |
215
+ | 0.6635 | 2100 | 0.0011 | - |
216
+ | 0.6793 | 2150 | 0.1962 | - |
217
+ | 0.6951 | 2200 | 0.0007 | - |
218
+ | 0.7109 | 2250 | 0.0007 | - |
219
+ | 0.7267 | 2300 | 0.0009 | - |
220
+ | 0.7425 | 2350 | 0.0007 | - |
221
+ | 0.7583 | 2400 | 0.0006 | - |
222
+ | 0.7741 | 2450 | 0.0015 | - |
223
+ | 0.7899 | 2500 | 0.0005 | - |
224
+ | 0.8057 | 2550 | 0.0007 | - |
225
+ | 0.8215 | 2600 | 0.0016 | - |
226
+ | 0.8373 | 2650 | 0.0008 | - |
227
+ | 0.8531 | 2700 | 0.0013 | - |
228
+ | 0.8689 | 2750 | 0.0007 | - |
229
+ | 0.8847 | 2800 | 0.0008 | - |
230
+ | 0.9005 | 2850 | 0.0008 | - |
231
+ | 0.9163 | 2900 | 0.0005 | - |
232
+ | 0.9321 | 2950 | 0.0006 | - |
233
+ | 0.9479 | 3000 | 0.0006 | - |
234
+ | 0.9637 | 3050 | 0.0006 | - |
235
+ | 0.9795 | 3100 | 0.0004 | - |
236
+ | 0.9953 | 3150 | 0.0005 | - |
237
+ | 1.0 | 3165 | - | 0.2012 |
238
+
239
+ ### Framework Versions
240
+ - Python: 3.10.13
241
+ - SetFit: 1.0.3
242
+ - Sentence Transformers: 3.0.1
243
+ - spaCy: 3.7.5
244
+ - Transformers: 4.36.2
245
+ - PyTorch: 2.1.2
246
+ - Datasets: 2.19.2
247
+ - Tokenizers: 0.15.2
248
+
249
+ ## Citation
250
+
251
+ ### BibTeX
252
+ ```bibtex
253
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
254
+ doi = {10.48550/ARXIV.2209.11055},
255
+ url = {https://arxiv.org/abs/2209.11055},
256
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
257
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
258
+ title = {Efficient Few-Shot Learning Without Prompts},
259
+ publisher = {arXiv},
260
+ year = {2022},
261
+ copyright = {Creative Commons Attribution 4.0 International}
262
+ }
263
+ ```
264
+
265
+ <!--
266
+ ## Glossary
267
+
268
+ *Clearly define terms in order to be accessible across audiences.*
269
+ -->
270
+
271
+ <!--
272
+ ## Model Card Authors
273
+
274
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
275
+ -->
276
+
277
+ <!--
278
+ ## Model Card Contact
279
+
280
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
281
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-sentence-bert-large",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 30522
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.36.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "negatif",
5
+ "positif"
6
+ ],
7
+ "span_context": 3,
8
+ "spacy_model": "id_core_news_trf"
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa7e44eb1d77c532fc79d8385604849777ffece381e313f25ed58cf2ee542720
3
+ size 1340612432
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3008e7f1a322468dcb1c5330ae13eee34a7efec27987515a410a9d6e61994dc9
3
+ size 17279
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff