--- license: mit base_model: BAAI/bge-base-en-v1.5 tags: - generated_from_trainer model-index: - name: SECTOR-multilabel-bge results: [] --- # SECTOR-multilabel-bge This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6114 - Precision-micro: 0.6428 - Precision-samples: 0.7488 - Precision-weighted: 0.6519 - Recall-micro: 0.7855 - Recall-samples: 0.8627 - Recall-weighted: 0.7855 - F1-micro: 0.7071 - F1-samples: 0.7638 - F1-weighted: 0.7109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.04e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.7077 | 1.0 | 633 | 0.5490 | 0.4226 | 0.5465 | 0.4954 | 0.8211 | 0.8908 | 0.8211 | 0.5580 | 0.6243 | 0.5977 | | 0.4546 | 2.0 | 1266 | 0.5009 | 0.4899 | 0.6127 | 0.5202 | 0.8438 | 0.9023 | 0.8438 | 0.6199 | 0.6822 | 0.6366 | | 0.3105 | 3.0 | 1899 | 0.4947 | 0.5005 | 0.6593 | 0.5317 | 0.8508 | 0.8970 | 0.8508 | 0.6303 | 0.7125 | 0.6474 | | 0.2044 | 4.0 | 2532 | 0.5430 | 0.5757 | 0.7044 | 0.5970 | 0.8106 | 0.8801 | 0.8106 | 0.6733 | 0.7379 | 0.6834 | | 0.1314 | 5.0 | 3165 | 0.5633 | 0.6132 | 0.7385 | 0.6271 | 0.8065 | 0.8772 | 0.8065 | 0.6967 | 0.7606 | 0.7032 | | 0.0892 | 6.0 | 3798 | 0.6073 | 0.6425 | 0.7499 | 0.6545 | 0.7844 | 0.8610 | 0.7844 | 0.7064 | 0.7634 | 0.7113 | | 0.0721 | 7.0 | 4431 | 0.6114 | 0.6428 | 0.7488 | 0.6519 | 0.7855 | 0.8627 | 0.7855 | 0.7071 | 0.7638 | 0.7109 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2