--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - GRPUI/autotrain-data-ssugt-model co2_eq_emissions: emissions: 0.01609460864740505 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 91334144491 - CO2 Emissions (in grams): 0.0161 ## Validation Metrics - Loss: 0.022 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/GRPUI/autotrain-ssugt-model-91334144491 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("GRPUI/autotrain-ssugt-model-91334144491", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("GRPUI/autotrain-ssugt-model-91334144491", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```