--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - GRPUI/autotrain-data-sgugit-model-v4 co2_eq_emissions: emissions: 1.0134962279728574 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 92034144745 - CO2 Emissions (in grams): 1.0135 ## Validation Metrics - Loss: 0.027 - Accuracy: 0.997 - Macro F1: 0.989 - Micro F1: 0.997 - Weighted F1: 0.997 - Macro Precision: 0.991 - Micro Precision: 0.997 - Weighted Precision: 0.997 - Macro Recall: 0.989 - Micro Recall: 0.997 - Weighted Recall: 0.997 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/GRPUI/autotrain-sgugit-model-v4-92034144745 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("GRPUI/autotrain-sgugit-model-v4-92034144745", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("GRPUI/autotrain-sgugit-model-v4-92034144745", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```