ppo-LunarLander-v2 / config.json
Gabcsor's picture
Upload PPO LunarLander-v2 trained agent
19301e4
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbbbc8454c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbbbc845550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbbbc8455e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbbbc845670>", "_build": "<function ActorCriticPolicy._build at 0x7fbbbc845700>", "forward": "<function ActorCriticPolicy.forward at 0x7fbbbc845790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbbbc845820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbbbc8458b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbbbc845940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbbbc8459d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbbbc845a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbbbc845af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbbbc844240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677061450815972910, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOViL3E26U/wKP0vpe/Db8g7Ee9XYdNvgAAAAAAAAAAs6tDPX6mgT5N4pC+tzm8vjOxiL1NW9S9AAAAAAAAAAAz9Km9hayGu56KaD5KpAM9SEbTvAhp3D0AAAAAAAAAAMCjmD2uP5u6lpi6tnGBq7HNEg2721DYNQAAgD8AAIA/M4UkvZ8//DwTkw4+K+iKvmCwtz1x0Kk9AAAAAAAAAABmpsY5PdOfPwJcMzuKPzC/TbLduUphILoAAAAAAAAAAACMwDyyybg/su1HP8zH6j67+6i8ipnJvQAAAAAAAAAAvcqhvkXwpz4OJq8+32sRv6sGs77qs4Q+AAAAAAAAAACAP3A+ulknP7MIDL4Fcf6+Un8PPsif270AAAAAAAAAACChOL5pEGy8kqRBu0uok7m0oNg9enFuOgAAgD8AAIA/AJNDPRTwobquhg67Meq/tbYAWTmiQiw1AAAAAAAAAACaaTK+LxM4P/6akjxcQBG/vphgvk42Ij0AAAAAAAAAAABEATxxE2C7usW1OyEnjjwSC6g81g90vQAAgD8AAIA/zY76PM9WMz0XsyW+tPFjvmej6bz/YRI7AAAAAAAAAABmAh49j5Jruk69/Lqkyv82ApRyu1p8WbYAAAAAAAAAABsLlb4xIjk+6jjcPsnkn75Dk0Y9aP7RPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDYrmASwkckCUhpRSlIwBbJRL4IwBdJRHQKB4t7aZhKF1fZQoaAZoCWgPQwgKaCJseIdyQJSGlFKUaBVLtGgWR0CgeNPKlpGndX2UKGgGaAloD0MIZmmn5nKBcECUhpRSlGgVS81oFkdAoHjlGXokiXV9lChoBmgJaA9DCIS4cvYO2nFAlIaUUpRoFUvAaBZHQKB5CZfD1oR1fZQoaAZoCWgPQwic/YFy22llQJSGlFKUaBVN6ANoFkdAoHkkHIIWxnV9lChoBmgJaA9DCA+aXfdW9kdAlIaUUpRoFUuYaBZHQKB5K5Fw1ix1fZQoaAZoCWgPQwhpHsAivw5zQJSGlFKUaBVL4mgWR0CgecWWIGhVdX2UKGgGaAloD0MIm+Wy0Tl/KUCUhpRSlGgVS2BoFkdAoHnmV/tpmHV9lChoBmgJaA9DCHBCIQIO0HBAlIaUUpRoFUvJaBZHQKB6Rs54nnd1fZQoaAZoCWgPQwhi2jf3V3pxQJSGlFKUaBVLwWgWR0Cgepx8D0UXdX2UKGgGaAloD0MId4NoregRcECUhpRSlGgVS95oFkdAoHrpIBikPHV9lChoBmgJaA9DCL9gN2ybRHFAlIaUUpRoFUu5aBZHQKB68NKAavR1fZQoaAZoCWgPQwhAEvbtZJZwQJSGlFKUaBVL32gWR0CgexYTbnHOdX2UKGgGaAloD0MIWTSdnYwGcUCUhpRSlGgVS8xoFkdAoHspTCLuQnV9lChoBmgJaA9DCOCe509b9HJAlIaUUpRoFUvTaBZHQKB7J63y7PJ1fZQoaAZoCWgPQwivJeSDXuFxQJSGlFKUaBVL02gWR0CgezRm03OwdX2UKGgGaAloD0MIkNrEyX1GcUCUhpRSlGgVS9VoFkdAoHtZGax5cHV9lChoBmgJaA9DCGrBi74CYnNAlIaUUpRoFUvhaBZHQKB7XA31jAl1fZQoaAZoCWgPQwj5S4v6JHhxQJSGlFKUaBVL0GgWR0Cge3lS88LbdX2UKGgGaAloD0MIVYSbjKqjckCUhpRSlGgVS8hoFkdAoHuDJjlPrXV9lChoBmgJaA9DCDHtm/trr3BAlIaUUpRoFUvEaBZHQKB7mUoKD011fZQoaAZoCWgPQwgsSgnBKn5wQJSGlFKUaBVL6GgWR0Cge/CdBjWkdX2UKGgGaAloD0MI6znpfaNTckCUhpRSlGgVS9BoFkdAoHx+IRAbAHV9lChoBmgJaA9DCLwgIjWtiXFAlIaUUpRoFUvbaBZHQKB8goTfzjF1fZQoaAZoCWgPQwhYHw99N2pxQJSGlFKUaBVLxWgWR0CghAUtZmqYdX2UKGgGaAloD0MIXkiHh7B9cECUhpRSlGgVS95oFkdAoIQIHNX5nHV9lChoBmgJaA9DCCFX6lmQum9AlIaUUpRoFUu6aBZHQKCELS0BwMp1fZQoaAZoCWgPQwhUc7nBUCFyQJSGlFKUaBVLwWgWR0CghF748EFGdX2UKGgGaAloD0MI63B0la5nckCUhpRSlGgVS7hoFkdAoIReOjqOcXV9lChoBmgJaA9DCBXkZyPXQHFAlIaUUpRoFUvXaBZHQKCEupc5bQl1fZQoaAZoCWgPQwid1JelnZVyQJSGlFKUaBVLwGgWR0CghMW9+PRzdX2UKGgGaAloD0MIMpI9Qs3dbUCUhpRSlGgVS9NoFkdAoITkLx7RfHV9lChoBmgJaA9DCJuRQe4iEnFAlIaUUpRoFUvHaBZHQKCE6CSzPbB1fZQoaAZoCWgPQwgbgXhdf01yQJSGlFKUaBVL92gWR0CghO6Hbh3rdX2UKGgGaAloD0MIdvpBXSQDc0CUhpRSlGgVS/ZoFkdAoIUYq3EycnV9lChoBmgJaA9DCCwRqP6BXXNAlIaUUpRoFUvoaBZHQKCFHpkf9xZ1fZQoaAZoCWgPQwjTMlLvqapwQJSGlFKUaBVL1mgWR0CghSlGPPszdX2UKGgGaAloD0MIf6Xz4VnDcUCUhpRSlGgVS8RoFkdAoIVSYzBRAXV9lChoBmgJaA9DCKg4Drwan3FAlIaUUpRoFUuwaBZHQKCGFaA4GUx1fZQoaAZoCWgPQwiK6UKsPtJyQJSGlFKUaBVL4mgWR0Cghiv2oNutdX2UKGgGaAloD0MIo5BkVm9lcUCUhpRSlGgVS7loFkdAoIYz6UJOWXV9lChoBmgJaA9DCCEdHsI4PXNAlIaUUpRoFUv4aBZHQKCGcJ3xFy91fZQoaAZoCWgPQwhL6C6JMxxvQJSGlFKUaBVLyWgWR0CghoXzDn/2dX2UKGgGaAloD0MIOx3Ieqo7cUCUhpRSlGgVS8loFkdAoIa0th/iHnV9lChoBmgJaA9DCP8gkiHHbnJAlIaUUpRoFUvOaBZHQKCGxLGJemh1fZQoaAZoCWgPQwhUrYVZ6NdvQJSGlFKUaBVLxWgWR0CghwZ9mYjTdX2UKGgGaAloD0MI4gLQKB2GcECUhpRSlGgVS8FoFkdAoIcclE7W/nV9lChoBmgJaA9DCA4w8x38gHBAlIaUUpRoFUu5aBZHQKCHOqc3EQ51fZQoaAZoCWgPQwjp7jobcr5vQJSGlFKUaBVL0mgWR0Cgh1FXRw6ydX2UKGgGaAloD0MIvhQeNLvvckCUhpRSlGgVS+JoFkdAoIdeaQV9GHV9lChoBmgJaA9DCCNOJ9mqO3NAlIaUUpRoFUvWaBZHQKCHZ+DOC5F1fZQoaAZoCWgPQwg/HCRE+eRvQJSGlFKUaBVLyGgWR0Cgh3m9pRGddX2UKGgGaAloD0MInUgw1Qz7cUCUhpRSlGgVS9RoFkdAoIeMnw5NoXV9lChoBmgJaA9DCBVvZB754m9AlIaUUpRoFUvCaBZHQKCHkHMUypJ1fZQoaAZoCWgPQwjx2To4WJVuQJSGlFKUaBVLwGgWR0CgiEthd+ocdX2UKGgGaAloD0MIxhaCHBTic0CUhpRSlGgVS89oFkdAoIic81XNknV9lChoBmgJaA9DCL+2fvpP821AlIaUUpRoFUu/aBZHQKCIq+pwS8J1fZQoaAZoCWgPQwifPgJ/uKVxQJSGlFKUaBVL3GgWR0CgiL4lY2bYdX2UKGgGaAloD0MI7RD/sOWfcUCUhpRSlGgVS8loFkdAoIjiUHIIW3V9lChoBmgJaA9DCFEv+DSnAnJAlIaUUpRoFUvJaBZHQKCJFMJQcgh1fZQoaAZoCWgPQwjWyK60zAhxQJSGlFKUaBVLyWgWR0CgiSWpqASWdX2UKGgGaAloD0MIMQkX8khRc0CUhpRSlGgVS7xoFkdAoImIoNNJv3V9lChoBmgJaA9DCJIHIov0CXBAlIaUUpRoFUvFaBZHQKCJkGL1mJ51fZQoaAZoCWgPQwhWZd8VQb5wQJSGlFKUaBVL0GgWR0CgiZfIKc/ddX2UKGgGaAloD0MIjndHxip0cUCUhpRSlGgVS9loFkdAoImf6hxo7HV9lChoBmgJaA9DCFw+kpJejHFAlIaUUpRoFUu+aBZHQKCJuSkCV8l1fZQoaAZoCWgPQwhFEyhi0V9xQJSGlFKUaBVLyGgWR0CgibjOcDr7dX2UKGgGaAloD0MICOOncW9DcECUhpRSlGgVS8hoFkdAoInyDyvs7nV9lChoBmgJaA9DCGYyHM/n7XJAlIaUUpRoFUvQaBZHQKCKDcNYr8R1fZQoaAZoCWgPQwhn8s02N0I5QJSGlFKUaBVLaWgWR0CgijhJZntfdX2UKGgGaAloD0MIH0q05HFrcECUhpRSlGgVS79oFkdAoIuvNiYsunV9lChoBmgJaA9DCAMmcOtu6XFAlIaUUpRoFUvoaBZHQKCL5w71Zkl1fZQoaAZoCWgPQwgRc0nVtqZwQJSGlFKUaBVL2GgWR0CgjBAccU/OdX2UKGgGaAloD0MI27+y0uT0c0CUhpRSlGgVS9loFkdAoIxEqWkadnV9lChoBmgJaA9DCPwBDwwgSnBAlIaUUpRoFUvQaBZHQKCMl2Jzkp91fZQoaAZoCWgPQwhIGXEB6P1xQJSGlFKUaBVL3mgWR0CgjPcTakAQdX2UKGgGaAloD0MI5pKq7eZicECUhpRSlGgVS8FoFkdAoI0KMrEtNHV9lChoBmgJaA9DCOSDns0qA3BAlIaUUpRoFUvIaBZHQKCNQ98qnWJ1fZQoaAZoCWgPQwipTZzcr1hxQJSGlFKUaBVLw2gWR0CgjVP6j323dX2UKGgGaAloD0MIJclzfR9ab0CUhpRSlGgVS9FoFkdAoI1f7iyY5XV9lChoBmgJaA9DCBl2GJP+B3NAlIaUUpRoFUvRaBZHQKCNkq1gH/t1fZQoaAZoCWgPQwjBUl3Ay7hwQJSGlFKUaBVLxmgWR0CgjbvfsNUgdX2UKGgGaAloD0MI6UXtftW2cUCUhpRSlGgVS8VoFkdAoI4G6ErXlXV9lChoBmgJaA9DCNPB+j/HknBAlIaUUpRoFUvRaBZHQKCOC/pMYdh1fZQoaAZoCWgPQwgyryMOWWlyQJSGlFKUaBVL2GgWR0Cgj8dXLeQ/dX2UKGgGaAloD0MI7L5jeGyacECUhpRSlGgVS8toFkdAoI/2FQEZBXV9lChoBmgJaA9DCBE4EmiwL05AlIaUUpRoFUufaBZHQKCQE/qxC6Z1fZQoaAZoCWgPQwhHyECeXfVvQJSGlFKUaBVLx2gWR0CgkCEpiI+GdX2UKGgGaAloD0MIT3Rd+EG7cUCUhpRSlGgVS91oFkdAoJAsTakAP3V9lChoBmgJaA9DCIDvNm8c43FAlIaUUpRoFUvAaBZHQKCQX/4qPOp1fZQoaAZoCWgPQwjg1t08lW9wQJSGlFKUaBVLy2gWR0CgkRtkFwDOdX2UKGgGaAloD0MI/MOWHk3vckCUhpRSlGgVS8doFkdAoJFJ9XtBwHV9lChoBmgJaA9DCF6fOetT43JAlIaUUpRoFUvNaBZHQKCRfHBk7Op1fZQoaAZoCWgPQwiYofFEEKhxQJSGlFKUaBVL2GgWR0CgkgwkPczqdX2UKGgGaAloD0MI6x7ZXLXlckCUhpRSlGgVS8toFkdAoJJWBBiTdXV9lChoBmgJaA9DCLVTc7kBDHBAlIaUUpRoFUvfaBZHQKCSZ8Aq/dt1fZQoaAZoCWgPQwi2L6AX7n1xQJSGlFKUaBVL2GgWR0CgkqV/2Cd0dX2UKGgGaAloD0MIdck4RrI2cUCUhpRSlGgVS7ZoFkdAoJQILw4KhXV9lChoBmgJaA9DCLlxi/n5jHFAlIaUUpRoFUu/aBZHQKCUEMbWEsd1fZQoaAZoCWgPQwgtlbcjHOFyQJSGlFKUaBVLvGgWR0CglEnjIaLodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}