Gabi00's picture
Model save
d85514e verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - audiofolder
library_name: peft
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-v3-LoRA-en_students_test_2
    results: []

whisper-v3-LoRA-en_students_test_2

This model is a fine-tuned version of openai/whisper-large-v3 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3590
  • Wer: 12.3268

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9094 0.1270 500 0.6347 24.3686
0.5517 0.2541 1000 0.4835 18.0769
0.5364 0.3811 1500 0.4330 15.1149
0.5503 0.5081 2000 0.4113 13.6524
0.6521 0.6352 2500 0.3987 13.5897
0.6044 0.7622 3000 0.3912 13.0538
0.5487 0.8892 3500 0.3835 12.6119
0.5297 1.0163 4000 0.3791 12.4408
0.46 1.1433 4500 0.3751 12.3525
0.4947 1.2703 5000 0.3721 12.1415
0.524 1.3974 5500 0.3682 13.0139
0.4743 1.5244 6000 0.3649 13.3388
0.5338 1.6514 6500 0.3621 12.9397
0.5162 1.7785 7000 0.3597 13.3246
0.5004 1.9055 7500 0.3590 12.3268

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1