--- base_model: openai/whisper-large-v3 datasets: - audiofolder library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-v3-LoRA-en_students_test_2 results: [] --- # whisper-v3-LoRA-en_students_test_2 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3590 - Wer: 12.3268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.9094 | 0.1270 | 500 | 0.6347 | 24.3686 | | 0.5517 | 0.2541 | 1000 | 0.4835 | 18.0769 | | 0.5364 | 0.3811 | 1500 | 0.4330 | 15.1149 | | 0.5503 | 0.5081 | 2000 | 0.4113 | 13.6524 | | 0.6521 | 0.6352 | 2500 | 0.3987 | 13.5897 | | 0.6044 | 0.7622 | 3000 | 0.3912 | 13.0538 | | 0.5487 | 0.8892 | 3500 | 0.3835 | 12.6119 | | 0.5297 | 1.0163 | 4000 | 0.3791 | 12.4408 | | 0.46 | 1.1433 | 4500 | 0.3751 | 12.3525 | | 0.4947 | 1.2703 | 5000 | 0.3721 | 12.1415 | | 0.524 | 1.3974 | 5500 | 0.3682 | 13.0139 | | 0.4743 | 1.5244 | 6000 | 0.3649 | 13.3388 | | 0.5338 | 1.6514 | 6500 | 0.3621 | 12.9397 | | 0.5162 | 1.7785 | 7000 | 0.3597 | 13.3246 | | 0.5004 | 1.9055 | 7500 | 0.3590 | 12.3268 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.4 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1