from typing import Dict, Any import torch from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from PIL import Image import io import base64 import requests class EndpointHandler(): def __init__(self, path=""): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = Qwen2VLForConditionalGeneration.from_pretrained(path).to(self.device) self.processor = AutoProcessor.from_pretrained(path) def __call__(self, data: Any) -> Dict[str, Any]: default_prompt = "Describe this image." if isinstance(data, (bytes, bytearray)): image = Image.open(io.BytesIO(data)).convert('RGB') text_input = default_prompt elif isinstance(data, dict): image_input = data.get('image', None) text_input = data.get('text', default_prompt) if image_input is None: return {"error": "No image provided."} if image_input.startswith('http'): image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB') else: image_data = base64.b64decode(image_input) image = Image.open(io.BytesIO(image_data)).convert('RGB') else: return {"error": "Invalid input data. Expected binary image data or a dictionary with 'image' key."} messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_input}, ], } ] text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = self.processor( text=[text], images=[image], padding=True, return_tensors="pt", ).to(self.device) generate_ids = self.model.generate(inputs.input_ids, max_length=30) output_text = self.processor.batch_decode( generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] return {"generated_text": output_text}