update model card README.md
Browse files
README.md
CHANGED
@@ -2,17 +2,6 @@
|
|
2 |
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
-
|
6 |
-
widget:
|
7 |
-
"National League sålde Republiken Irland midfielder till Cherries för £ 175,000 under 2012 och hade en 15% sälj-on klausul ingår i affären. O'Kane flyttade för en hemlig avgift, men Nicholson säger att alla pengar kommer att gå för att hjälpa den cash-strappade klubben. 'Jag tror inte att jag kommer att få något,' Nicholson berättade BBC Devon. 'Det finns viktigare saker.' Gulls letar fortfarande efter nya ägare som har tagits över av ett konsortium av lokala affärsmän förra sommaren. De tvingades stänga klubbens akademi och drastiskt minska spelbudgeten efter miljonär tidigare ägare Thea Bristow lämnade klubben."
|
8 |
-
|
9 |
-
inference:
|
10 |
-
parameters:
|
11 |
-
temperature: 0.7
|
12 |
-
min_length: 30
|
13 |
-
max_length: 120
|
14 |
-
num_beams: 5
|
15 |
-
|
16 |
metrics:
|
17 |
- rouge
|
18 |
model-index:
|
@@ -27,12 +16,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
27 |
|
28 |
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
|
29 |
It achieves the following results on the evaluation set:
|
30 |
-
- Loss: 2.
|
31 |
-
- Rouge1:
|
32 |
-
- Rouge2:
|
33 |
-
- Rougel: 25.
|
34 |
-
- Rougelsum: 25.
|
35 |
-
- Gen Len: 19.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -51,7 +40,7 @@ More information needed
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
-
- learning_rate:
|
55 |
- train_batch_size: 16
|
56 |
- eval_batch_size: 16
|
57 |
- seed: 42
|
@@ -60,21 +49,16 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_steps: 500
|
63 |
-
- num_epochs:
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
69 |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 1.
|
73 |
-
| 1.7098 | 4.0 | 25500 | 2.1073 | 31.1173 | 12.4124 | 25.6553 | 25.6913 | 19.7546 |
|
74 |
-
| 1.5761 | 5.0 | 31875 | 2.1227 | 30.9586 | 12.4907 | 25.5474 | 25.5745 | 19.7675 |
|
75 |
-
| 1.4618 | 6.0 | 38250 | 2.1484 | 31.115 | 12.6546 | 25.684 | 25.7151 | 19.7456 |
|
76 |
-
| 1.3643 | 7.0 | 44625 | 2.1705 | 31.2225 | 12.8069 | 25.7901 | 25.8154 | 19.7842 |
|
77 |
-
| 1.2944 | 8.0 | 51000 | 2.1895 | 31.1693 | 12.7388 | 25.7655 | 25.7862 | 19.7733 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
2 |
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- rouge
|
7 |
model-index:
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.1140
|
20 |
+
- Rouge1: 30.7101
|
21 |
+
- Rouge2: 11.9532
|
22 |
+
- Rougel: 25.1864
|
23 |
+
- Rougelsum: 25.2227
|
24 |
+
- Gen Len: 19.7448
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 3.75e-05
|
44 |
- train_batch_size: 16
|
45 |
- eval_batch_size: 16
|
46 |
- seed: 42
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 3
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
58 |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
59 |
+
| 2.3087 | 1.0 | 6375 | 2.1997 | 29.7666 | 11.0222 | 24.2659 | 24.2915 | 19.7172 |
|
60 |
+
| 2.0793 | 2.0 | 12750 | 2.1285 | 30.4447 | 11.7671 | 24.9238 | 24.9622 | 19.7051 |
|
61 |
+
| 1.9186 | 3.0 | 19125 | 2.1140 | 30.7101 | 11.9532 | 25.1864 | 25.2227 | 19.7448 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|