--- library_name: transformers language: - id license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Id - Tiny - Test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: id split: None args: 'config: id, split: test' metrics: - name: Wer type: wer value: 58.26771653543307 --- # Whisper Small Id - Tiny - Test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2371 - Wer: 58.2677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.8373 | 0.0625 | 1 | 1.6351 | 93.3071 | | 1.7614 | 0.125 | 2 | 1.5526 | 90.9449 | | 1.5333 | 0.1875 | 3 | 1.4336 | 59.4488 | | 1.5874 | 0.25 | 4 | 1.3667 | 59.4488 | | 1.4808 | 0.3125 | 5 | 1.3238 | 58.2677 | | 1.5046 | 0.375 | 6 | 1.2933 | 56.6929 | | 1.3783 | 0.4375 | 7 | 1.2704 | 57.4803 | | 1.3692 | 0.5 | 8 | 1.2536 | 57.0866 | | 1.3708 | 0.5625 | 9 | 1.2426 | 57.0866 | | 1.3299 | 0.625 | 10 | 1.2371 | 58.2677 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3