--- license: mit datasets: - GainEnergy/gpt-4o-oilandgas-trainingset base_model: - qihoo360/TinyR1-32B-Preview library_name: transformers tags: - oil-gas - drilling-engineering - retrieval-augmented-generation - finetuned - energy-ai - tiny-r1-32b - lora model-index: - name: OGAI-R1 results: - task: type: text-generation name: Oil & Gas Engineering AI dataset: name: GainEnergy GPT-4o Oil & Gas Training Set type: custom metrics: - name: Engineering Calculations Accuracy type: accuracy value: 94.3 - name: Technical Document Retrieval Precision type: precision value: 90.5 - name: Context Retention type: contextual-coherence value: High --- # OGAI-R1: Oil & Gas AI Model for Engineering & Technical Knowledge ![Hugging Face](https://img.shields.io/badge/HuggingFace-OGAI--R1-blue) [![License](https://img.shields.io/github/license/huggingface/transformers.svg)](LICENSE) **OGAI-R1** is a **fine-tuned version of TinyR1-32B**, designed specifically for **oil and gas engineering applications**. It is optimized for **engineering calculations, wellbore stability analysis, reservoir management, and document-based retrieval-augmented generation (RAG)**. The model has been trained using **GainEnergy's GPT-4o Oil & Gas Training Set**, incorporating expert knowledge, technical formulas, and structured query-response interactions. ## 🏗 **Why Use OGAI-R1?** - **🚀 Fine-tuned for oil & gas engineering tasks** (drilling, production, reservoir, and refining). - **💡 Optimized for RAG** – Enhanced document understanding and retrieval. - **📚 Long-Context Retention** – Handles **up to 32K tokens** for complex engineering workflows. - **⚡ LoRA Fine-Tuning on TinyR1-32B** – Enables efficient inference and quick knowledge retrieval. --- ## 🛠 **How to Use OGAI-R1** ### **1️⃣ Install Required Dependencies** ```bash pip install torch transformers accelerate bitsandbytes ``` ### **2️⃣ Load the Model** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "GainEnergy/OGAI-R1" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) # Load model model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") # Run inference prompt = "Explain the principles of reservoir simulation in petroleum engineering." inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## 📦 **Model Variants** | **Model Name** | **Base Model** | **Precision** | **Context Window** | **Use Case** | |--------------|--------------|--------------|--------------|--------------| | **OGAI-R1** | TinyR1-32B | FP16 | 32K tokens | **Engineering Calculations & RAG** | | **OGAI-8x7B** | Mixtral-8x7B | 4-bit | 32K tokens | Oil & Gas AI Assistant | | **OGAI-Reasoner** | DeepSeek-R1 | FP16 | 128K tokens | Logical Reasoning & AI Simulation | --- ## 📌 **Key Capabilities** ✅ **Engineering Calculations** – Computes reservoir volumes, wellbore stability, mud weight, casing depth, and more. ✅ **Technical Document Understanding** – Trained on oil and gas **technical literature, drilling reports, and engineering manuals**. ✅ **Retrieval-Augmented Generation (RAG)** – Enhances AI-driven document retrieval for faster decision-making. ✅ **High-Context Retention (32K tokens)** – Supports **long technical reports, operational workflows, and AI-driven engineering analysis**. --- ## 🚀 **Use Cases** - **Wellbore Stability & Drilling Optimization** - **Hydraulics & Fluid Flow Simulations** - **Reservoir Engineering & Petrophysics Analysis** - **AI-Powered Document Retrieval & RAG Workflows** - **Technical Compliance & Regulatory Document Processing** --- ## 📡 **Deployment Options** | **Platform** | **Compatible?** | **Recommended Setup** | |-------------|----------------|-----------------------| | **Hugging Face Inference API** | ✅ Yes | Deploy via `hf.co/GainEnergy/OGAI-R1` | | **RunPod.io (Serverless GPU)** | ✅ Yes | `A100-40GB` or `RTX 4090` | | **AWS EC2 (G5 Instances)** | ✅ Yes | `ml.g5.2xlarge` (8 vCPUs, 32GB RAM) | | **Local GPU (Consumer Hardware)** | ✅ Yes | Requires **≥16GB VRAM (RTX 3090, 4090)** | --- ## ⚠️ **Limitations** 🚧 **Optimized for Oil & Gas Engineering** – Not designed for general-purpose AI tasks. 🚧 **Requires domain-specific expertise** – Outputs should be validated by industry experts. 🚧 **Computational requirements** – Running the full TinyR1-32B model requires high-end GPUs. --- ## 🔗 **Resources** - **[GainEnergy AI Platform](https://gain.energy)** – Explore AI-powered drilling automation. - **[Hugging Face Model Hub](https://huggingface.co/GainEnergy/OGAI-R1)** – Download & deploy the model. --- ## 📚 **Citing OGAI-R1** ```bibtex @article{ogai-r1-2025, title={OGAI-R1: An AI Model for Oil & Gas Engineering Optimization}, author={GainEnergy AI Team}, year={2025}, publisher={Hugging Face Models} } ```