a2c-AntBulletEnv-v0 / config.json
Gaivoronsky's picture
Initial commit
a5194a1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f386c928f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f386c929000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f386c929090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f386c929120>", "_build": "<function ActorCriticPolicy._build at 0x7f386c9291b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f386c929240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f386c9292d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f386c929360>", "_predict": "<function ActorCriticPolicy._predict at 0x7f386c9293f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f386c929480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f386c929510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f386c9295a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f386c921340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684938326803392933, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2FsZXgvUHljaGFybVByb2plY3RzL1JML3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9hbGV4L1B5Y2hhcm1Qcm9qZWN0cy9STC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIk2Nz+ANbi/VJgTv9XRPz9qh9++J5YePtpLM798ys+/KrxSP5GSBcBiX7Q/7jOyv789pr8jb4o+vsqlPoA2B792n6+/UlmMvVcTij9cdW481mbEP7R8KMBWkBM/duTLP4dpi78xxNc+e+f8PqYKZb83R2Y/QdULQPyo5b/pz44/fhbRP9BH7j05Mu0/dfwLwIWKCz96Mpc/YG3Pvg04/D9wvqE/7vviPBfuPj8ALCq99yqcPzcaQ7zwl4U/Cx9oP0+/Db+vjJ8/lPj/veNB+7+HaYu/Mt4XwHvn/D6mCmW/mdbOvIX47b/+X9m//e1XP2Ve0L48wHu+FfP7PulSWb/MsdC+yh++PtcQZ7+9RLA/4dosP6Hdh77pnT0/a09vPNlUvT+/pnk7DnrMO4UlOL7xLtu945nzP8IhSr9yZC7Ah2mLvzLeF8B75/w+pgplv6glar8FvHG/wpqvPUBfOT8OGf09YwmvP/ijgj+YGKe/HPIgvyAEqj5QZJS/wxq0Prq1l74feYg/5oRRPh+oHD/OF6s/wUQJvV5vfj+fErS+S8k9P0ZQYj45Rz4/SKIWP4dpi78xxNc+e+f8PtIQjz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAgAAW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn7u+PAAAAAAmnP+/AAAAAFUplT0AAAAAxuP+PwAAAADfiFq9AAAAADwzAEAAAAAAQTilPQAAAADOt+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8piNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIUztL0AAAAAOLP5vwAAAAAWoUS9AAAAAEM/+D8AAAAADvYTPQAAAACozvQ/AAAAAEE8ib0AAAAAYOjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiUmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICK+gG+AAAAAJyyAMAAAAAAosCuvQAAAADEG9s/AAAAABx5xr0AAAAAnCMBQAAAAACoVg4+AAAAACjc3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8nI42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5q0RvgAAAAC/A/i/AAAAAOpBAj4AAAAAuTb/PwAAAAAz9u08AAAAAA0H8z8AAAAAur79PQAAAAA0GOS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIdl9XtBv76MAWyUTegDjAF0lEdAnJBKRhc7hnV9lChoBkdAgyLAbIcR2GgHTegDaAhHQJyVILKFIup1fZQoaAZHQJpSBBfKISFoB03oA2gIR0Ccl41IRRMwdX2UKGgGR0CSf61dxAB1aAdN6ANoCEdAnJx9LcsUZnV9lChoBkdAmGBJEDyOJmgHTegDaAhHQJyeMEbHZK51fZQoaAZHQI0m8R+SbH9oB03oA2gIR0Ccowhky1u0dX2UKGgGR0Ca31LVWjoIaAdN6ANoCEdAnKV0C/47BHV9lChoBkdAnEqpTAFgUmgHTegDaAhHQJyqckeIVM51fZQoaAZHQJclr9hqj8FoB03oA2gIR0CcrB5I6KcedX2UKGgGR0CYzjfAbhm5aAdN6ANoCEdAnLDtG/etS3V9lChoBkdAm2en5BTn72gHTegDaAhHQJyzXS9du511fZQoaAZHQJtN/YzzmOloB03oA2gIR0CcuK0WuX/pdX2UKGgGR0Ca9qkPtlZpaAdN6ANoCEdAnLpqfFrEcnV9lChoBkdAmZtAsbvPT2gHTegDaAhHQJy/bbL2YfJ1fZQoaAZHQJwHB3ljmS1oB03oA2gIR0CcwfteUpuudX2UKGgGR0CbxLZb6guiaAdN6ANoCEdAnMcwKrq+rXV9lChoBkdAmmio2jwhGGgHTegDaAhHQJzI825xzaN1fZQoaAZHQJWeQ7A+IM1oB03oA2gIR0CczgFyaNModX2UKGgGR0CbWQqHGjsVaAdN6ANoCEdAnNCM6vJRwnV9lChoBkdAnS6M63iJf2gHTegDaAhHQJzVne1rqMZ1fZQoaAZHQHZ1GfseGPBoB03oA2gIR0Cc10lg+hXbdX2UKGgGR0Cbb4f029+PaAdN6ANoCEdAnNwSUkfLcXV9lChoBkdAmUf4ikfs/2gHTegDaAhHQJzefnied091fZQoaAZHQIP5yNsFdLRoB03oA2gIR0Cc43OX3QD3dX2UKGgGR0CYUEhFmWdFaAdN6ANoCEdAnOUZx3mmtXV9lChoBkdAik039JjDsWgHTegDaAhHQJzp4vRJEpl1fZQoaAZHQI++914gRsdoB03oA2gIR0Cc7Efg75mAdX2UKGgGR0CXVyTvy9VWaAdN6ANoCEdAnPEyZnctXnV9lChoBkdAmj8/OdGy5mgHTegDaAhHQJzy2LNwBHV1fZQoaAZHQJFF759E1EVoB03oA2gIR0Cc9+HY6GQCdX2UKGgGR0CZIhaa1Cw9aAdN6ANoCEdAnPps9wFTvXV9lChoBkdAmr075Ec81WgHTegDaAhHQJz/VCdBjWl1fZQoaAZHQHfJ6wdKdx1oB03oA2gIR0CdAPpfQa73dX2UKGgGR0CQ6KKISDh+aAdN6ANoCEdAnQXGI9C/oXV9lChoBkdAkVkbvgFX72gHTegDaAhHQJ0IKhYeT3Z1fZQoaAZHQIyi1oUSIxhoB03oA2gIR0CdDRA/LTx5dX2UKGgGR0CbPjEZR8+iaAdN6ANoCEdAnQ65TIeYD3V9lChoBkdAlqsrUPQOWmgHTegDaAhHQJ0T3S5RTCN1fZQoaAZHQJfWlEKE385oB03oA2gIR0CdFm6K+BYndX2UKGgGR0CZQyC66J66aAdN6ANoCEdAnRuq7VawEHV9lChoBkdAkiSVJtix3WgHTegDaAhHQJ0dbOZ9d/t1fZQoaAZHQJfBs30f5k9oB03oA2gIR0CdImOavzOHdX2UKGgGR0CCuvYFJQLvaAdN6ANoCEdAnSTisbNr03V9lChoBkdAf+scz67/XGgHTegDaAhHQJ0qD4oJAt51fZQoaAZHQIAn70163RZoB03oA2gIR0CdK86dDpkgdX2UKGgGR0B/7Zdv863iaAdN6ANoCEdAnTDYakyk9HV9lChoBkdAgUz49Pk7wWgHTegDaAhHQJ0zXHS4OMF1fZQoaAZHQJhcyKuSwGJoB03oA2gIR0CdOHkfLcKxdX2UKGgGR0CB3cml67d0aAdN6ANoCEdAnTo3XmNipnV9lChoBkdAh368RlHz6WgHTegDaAhHQJ0/N6By0a91fZQoaAZHQJb1veUILPVoB03oA2gIR0CdQbk7OmiydX2UKGgGR0CblPFgUlAvaAdN6ANoCEdAnUbiu2Zy/HV9lChoBkdAkg5ZzcRDkWgHTegDaAhHQJ1ImglF+d91fZQoaAZHQIWn+a2F36hoB03oA2gIR0CdTXMdcSoPdX2UKGgGR0CVF5uvllshaAdN6ANoCEdAnU/fReC04XV9lChoBkdAly69zwMH8mgHTegDaAhHQJ1U0NkOI691fZQoaAZHQJEaOidrftRoB03oA2gIR0CdVnUT+NtJdX2UKGgGR0CUDN+NtIkJaAdN6ANoCEdAnVtkBfa6BnV9lChoBkdAi2jVp9JBgWgHTegDaAhHQJ1d5THbRF91fZQoaAZHQHo5vD+BH09oB03oA2gIR0CdYyItDlYEdX2UKGgGR0CE3UIoE0SAaAdN6ANoCEdAnWTZQxesxXV9lChoBkdAhsYcxbjcVWgHTegDaAhHQJ1p09dNWU91fZQoaAZHQJD6r+l0o0BoB03oA2gIR0CdbFSqlxffdX2UKGgGR0CC4FOPeYUnaAdN6ANoCEdAnXFuw9q1xHV9lChoBkdAktK0l7dBSmgHTegDaAhHQJ1zKby6MBJ1fZQoaAZHQIsG6zLOiWVoB03oA2gIR0CdeCJYT0xudX2UKGgGR0CPXi3nZCfIaAdN6ANoCEdAnXqluNxVAHV9lChoBkdAahsVM23rlmgHTegDaAhHQJ1/3aoMrmR1fZQoaAZHQIbqBHEuQIVoB03oA2gIR0CdgaIVuaWpdX2UKGgGR0CHzMpCrtE5aAdN6ANoCEdAnYawoG6f8XV9lChoBkdAj18M7U5MlGgHTegDaAhHQJ2JOfChvit1fZQoaAZHQH1tD8gpz91oB03oA2gIR0Cdjm2AoXsPdX2UKGgGR0CRQnj2SMcZaAdN6ANoCEdAnZAvmDDjznV9lChoBkdAbAL1X/5tWWgHTegDaAhHQJ2VNVNpM6B1fZQoaAZHQJGmyTeO4oZoB03oA2gIR0Cdl7bN8ma6dX2UKGgGR0CQC4tG/etTaAdN6ANoCEdAnZzd6LOzIHV9lChoBkdAe1wVclgMMWgHTegDaAhHQJ2enPyCnP51fZQoaAZHQHsa5mqYJE9oB03oA2gIR0Cdo6I+nqFAdX2UKGgGR0B8oUqLCN0eaAdN6ANoCEdAnaYUxyn1nXV9lChoBkdAjfMiFj/dZmgHTegDaAhHQJ2rPoLXtjV1fZQoaAZHQHU5jc2zfJpoB03oA2gIR0CdrPwNLDhtdX2UKGgGR0CRoNYGMXJpaAdN6ANoCEdAnbHnHBDXv3V9lChoBkdAkxtuizsyBWgHTegDaAhHQJ20V0vGp/B1fZQoaAZHQJR/sawUxmFoB03oA2gIR0CduVwKSgXedX2UKGgGR0CWUeeyiVSoaAdN6ANoCEdAnbsTEvTPSnV9lChoBkdAk/4pJPIn0GgHTegDaAhHQJ2/2iTMaCN1fZQoaAZHQJEHyISDh99oB03oA2gIR0Cdwj3bVSXMdX2UKGgGR0CThhOXVsk6aAdN6ANoCEdAncc4n4O+ZnV9lChoBkdAkORDyJ9Ao2gHTegDaAhHQJ3I5YlpoK51fZQoaAZHQInN2/N7jT9oB03oA2gIR0CdzbJlar3kdX2UKGgGR0CS71lJ6IFeaAdN6ANoCEdAndAWznied3V9lChoBkdAlf0EelsP8WgHTegDaAhHQJ3U9HkLhJl1fZQoaAZHQJcJh1mrbQFoB03oA2gIR0Cd1o71qWTpdX2UKGgGR0CUWhZ5Rjz7aAdN6ANoCEdAndspEDyOJnV9lChoBkdAkXj7jLjgh2gHTegDaAhHQJ3dhguyu6p1fZQoaAZHQIj9qH9FWn1oB03oA2gIR0Cd4l1JUYKqdX2UKGgGR0CKfviUgSvlaAdN6ANoCEdAneP4Ma0hNnV9lChoBkdAlIXcju8brGgHTegDaAhHQJ3ol+c6Nl11fZQoaAZHQJBVBk8RtgtoB03oA2gIR0Cd6usf7rLRdX2UKGgGR0CNLev8qFyraAdN6ANoCEdAne+xgqmTDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-42-generic-x86_64-with-glibc2.35 # 43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}