import pandas as pd import os.path import sys import json import logging import contexttimer if len(sys.argv) != 4: print("Provide .tsv file name, images dir, output file name. e.g. python coco.py coco_captions_train2017.json /mnt/disks/data-1/flickr8k/coco_train.json coco_dataset_train.json") exit(1) annotation_file = sys.argv[1] images_dir = sys.argv[2] output_file = sys.argv[3] logging.info("Processing Flicker 30k dataset") with contexttimer.Timer(prefix="Loading from tsv"): df = pd.read_csv(annotation_file, delimiter='\t') images_dict = {} for index, caption, image_name in df.itertuples(): if image_name in images_dict: images_dict[image_name] += [caption] else: images_dict[image_name] = [caption] lines = [] for image_path, captions in images_dict.items(): full_image_path = images_dir+"/"+image_name if os.path.isfile(full_image_path): lines.append(json.dumps({"image_path": full_image_path, "captions": captions})) else: print(f"{full_image_path} doesn't exist") train_lines = lines[:-3_001] valid_lines = lines[-3_001:] with open(output_file+"_train.json", "w") as f: f.write("\n".join(train_lines)) with open(output_file+"_val.json", "w") as f: f.write("\n".join(valid_lines)) logging.info(f"Processing Flicker 30k dataset done. {len(lines)} images processed.")