File size: 14,551 Bytes
5917f0a fc17b57 5917f0a fc17b57 5917f0a fc17b57 5917f0a fc17b57 5917f0a fc17b57 5917f0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from tqdm import tqdm
from typing import Dict, List
from pydiardecode import build_diardecoder
import numpy as np
import copy
import os
import json
import concurrent.futures
import kenlm
__INFO_TAG__ = "[BeamSearchUtil INFO]"
class SpeakerTaggingBeamSearchDecoder:
def __init__(self, loaded_kenlm_model: kenlm, cfg: dict):
self.realigning_lm_params = cfg
self.realigning_lm = self._load_realigning_LM(loaded_kenlm_model=loaded_kenlm_model)
self._SPLITSYM = "@"
def _load_realigning_LM(self, loaded_kenlm_model: kenlm):
"""
Load ARPA language model for realigning speaker labels for words.
"""
diar_decoder = build_diardecoder(
loaded_kenlm_model=loaded_kenlm_model,
kenlm_model_path=self.realigning_lm_params['arpa_language_model'],
alpha=self.realigning_lm_params['alpha'],
beta=self.realigning_lm_params['beta'],
word_window=self.realigning_lm_params['word_window'],
use_ngram=self.realigning_lm_params['use_ngram'],
)
return diar_decoder
def realign_words_with_lm(self, word_dict_seq_list: List[Dict[str, float]], speaker_count: int = None, port_num=None) -> List[Dict[str, float]]:
if speaker_count is None:
spk_list = []
for k, line_dict in enumerate(word_dict_seq_list):
_, spk_label = line_dict['word'], line_dict['speaker']
spk_list.append(spk_label)
else:
spk_list = [ f"speaker_{k}" for k in range(speaker_count)]
realigned_list = self.realigning_lm.decode_beams(beam_width=self.realigning_lm_params['beam_width'],
speaker_list=sorted(list(set(spk_list))),
word_dict_seq_list=word_dict_seq_list,
port_num=port_num)
return realigned_list
def beam_search_diarization(
self,
trans_info_dict: Dict[str, Dict[str, list]],
port_num: List[int] = None,
) -> Dict[str, Dict[str, float]]:
"""
Match the diarization result with the ASR output.
The words and the timestamps for the corresponding words are matched in a for loop.
Args:
Returns:
trans_info_dict (dict):
Dictionary containing word timestamps, speaker labels and words from all sessions.
Each session is indexed by a unique ID.
"""
for uniq_id, session_dict in tqdm(trans_info_dict.items(), total=len(trans_info_dict), disable=True):
word_dict_seq_list = session_dict['words']
output_beams = self.realign_words_with_lm(word_dict_seq_list=word_dict_seq_list, speaker_count=session_dict['speaker_count'], port_num=port_num)
word_dict_seq_list = output_beams[0][2]
trans_info_dict[uniq_id]['words'] = word_dict_seq_list
return trans_info_dict
def merge_div_inputs(self, div_trans_info_dict, org_trans_info_dict, win_len=250, word_window=16):
"""
Merge the outputs of parallel processing.
"""
uniq_id_list = list(org_trans_info_dict.keys())
sub_div_dict = {}
for seq_id in div_trans_info_dict.keys():
div_info = seq_id.split(self._SPLITSYM)
uniq_id, sub_idx, total_count = div_info[0], int(div_info[1]), int(div_info[2])
if uniq_id not in sub_div_dict:
sub_div_dict[uniq_id] = [None] * total_count
sub_div_dict[uniq_id][sub_idx] = div_trans_info_dict[seq_id]['words']
for uniq_id in uniq_id_list:
org_trans_info_dict[uniq_id]['words'] = []
for k, div_words in enumerate(sub_div_dict[uniq_id]):
if k == 0:
div_words = div_words[:win_len]
else:
div_words = div_words[word_window:]
org_trans_info_dict[uniq_id]['words'].extend(div_words)
return org_trans_info_dict
def divide_chunks(self, trans_info_dict, win_len, word_window, port):
"""
Divide word sequence into chunks of length `win_len` for parallel processing.
Args:
trans_info_dict (_type_): _description_
diar_logits (_type_): _description_
win_len (int, optional): _description_. Defaults to 250.
"""
if len(port) > 1:
num_workers = len(port)
else:
num_workers = 1
div_trans_info_dict = {}
for uniq_id in trans_info_dict.keys():
uniq_trans = trans_info_dict[uniq_id]
del uniq_trans['status']
del uniq_trans['transcription']
del uniq_trans['sentences']
word_seq = uniq_trans['words']
div_word_seq = []
if win_len is None:
win_len = int(np.ceil(len(word_seq)/num_workers))
n_chunks = int(np.ceil(len(word_seq)/win_len))
for k in range(n_chunks):
div_word_seq.append(word_seq[max(k*win_len - word_window, 0):(k+1)*win_len])
total_count = len(div_word_seq)
for k, w_seq in enumerate(div_word_seq):
seq_id = uniq_id + f"{self._SPLITSYM}{k}{self._SPLITSYM}{total_count}"
div_trans_info_dict[seq_id] = dict(uniq_trans)
div_trans_info_dict[seq_id]['words'] = w_seq
return div_trans_info_dict
def run_mp_beam_search_decoding(
speaker_beam_search_decoder,
loaded_kenlm_model,
div_trans_info_dict,
org_trans_info_dict,
div_mp,
win_len,
word_window,
port=None,
use_ngram=False
):
if len(port) > 1:
port = [int(p) for p in port]
if use_ngram:
port = [None]
num_workers = 36
else:
num_workers = len(port)
uniq_id_list = sorted(list(div_trans_info_dict.keys() ))
tp = concurrent.futures.ProcessPoolExecutor(max_workers=num_workers)
futures = []
count = 0
for uniq_id in uniq_id_list:
print(f"{__INFO_TAG__} Running beam search decoding for {uniq_id}...")
if port is not None:
port_num = port[count % len(port)]
else:
port_num = None
count += 1
uniq_trans_info_dict = {uniq_id: div_trans_info_dict[uniq_id]}
futures.append(tp.submit(speaker_beam_search_decoder.beam_search_diarization, uniq_trans_info_dict, port_num=port_num))
pbar = tqdm(total=len(uniq_id_list), desc="Running beam search decoding", unit="files")
count = 0
output_trans_info_dict = {}
for done_future in concurrent.futures.as_completed(futures):
count += 1
pbar.update()
output_trans_info_dict.update(done_future.result())
pbar.close()
tp.shutdown()
if div_mp:
output_trans_info_dict = speaker_beam_search_decoder.merge_div_inputs(div_trans_info_dict=output_trans_info_dict,
org_trans_info_dict=org_trans_info_dict,
win_len=win_len,
word_window=word_window)
return output_trans_info_dict
def count_num_of_spks(json_trans_list):
spk_set = set()
for sentence_dict in json_trans_list:
spk_set.add(sentence_dict['speaker'])
speaker_map = { spk_str: idx for idx, spk_str in enumerate(spk_set)}
return speaker_map
def add_placeholder_speaker_softmax(json_trans_list, peak_prob=0.94 ,max_spks=4):
nemo_json_dict = {}
word_dict_seq_list = []
if peak_prob > 1 or peak_prob < 0:
raise ValueError(f"peak_prob must be between 0 and 1 but got {peak_prob}")
speaker_map = count_num_of_spks(json_trans_list)
base_array = np.ones(max_spks) * (1 - peak_prob)/(max_spks-1)
stt_sec, end_sec = None, None
for sentence_dict in json_trans_list:
word_list = sentence_dict['words'].split()
speaker = sentence_dict['speaker']
for word in word_list:
speaker_softmax = copy.deepcopy(base_array)
speaker_softmax[speaker_map[speaker]] = peak_prob
word_dict_seq_list.append({'word': word,
'start_time': stt_sec,
'end_time': end_sec,
'speaker': speaker_map[speaker],
'speaker_softmax': speaker_softmax}
)
nemo_json_dict.update({'words': word_dict_seq_list,
'status': "success",
'sentences': json_trans_list,
'speaker_count': len(speaker_map),
'transcription': None}
)
return nemo_json_dict
def convert_nemo_json_to_seglst(trans_info_dict):
seglst_seq_list = []
seg_lst_dict, spk_wise_trans_sessions = {}, {}
for uniq_id in trans_info_dict.keys():
spk_wise_trans_sessions[uniq_id] = {}
seglst_seq_list = []
word_seq_list = trans_info_dict[uniq_id]['words']
prev_speaker, sentence = None, ''
for widx, word_dict in enumerate(word_seq_list):
curr_speaker = word_dict['speaker']
# For making speaker wise transcriptions
word = word_dict['word']
if curr_speaker not in spk_wise_trans_sessions[uniq_id]:
spk_wise_trans_sessions[uniq_id][curr_speaker] = word
elif curr_speaker in spk_wise_trans_sessions[uniq_id]:
spk_wise_trans_sessions[uniq_id][curr_speaker] = f"{spk_wise_trans_sessions[uniq_id][curr_speaker]} {word_dict['word']}"
# For making segment wise transcriptions
if curr_speaker!= prev_speaker and prev_speaker is not None:
seglst_seq_list.append({'session_id': uniq_id,
'words': sentence.strip(),
'start_time': 0.0,
'end_time': 0.0,
'speaker': prev_speaker,
})
sentence = word_dict['word']
else:
sentence = f"{sentence} {word_dict['word']}"
prev_speaker = curr_speaker
# For the last word:
# (1) If there is no speaker change, add the existing sentence and exit the loop
# (2) If there is a speaker change, add the last word and exit the loop
if widx == len(word_seq_list) - 1:
seglst_seq_list.append({'session_id': uniq_id,
'words': sentence.strip(),
'start_time': 0.0,
'end_time': 0.0,
'speaker': curr_speaker,
})
seg_lst_dict[uniq_id] = seglst_seq_list
return seg_lst_dict
def load_input_jsons(input_error_src_list_path, ext_str=".seglst.json", peak_prob=0.94, max_spks=4):
trans_info_dict = {}
json_filepath_list = open(input_error_src_list_path).readlines()
for json_path in json_filepath_list:
json_path = json_path.strip()
uniq_id = os.path.split(json_path)[-1].split(ext_str)[0]
if os.path.exists(json_path):
with open(json_path, "r") as file:
json_trans = json.load(file)
else:
raise FileNotFoundError(f"{json_path} does not exist. Aborting.")
nemo_json_dict = add_placeholder_speaker_softmax(json_trans, peak_prob=peak_prob, max_spks=max_spks)
trans_info_dict[uniq_id] = nemo_json_dict
return trans_info_dict
def load_reference_jsons(reference_seglst_list_path, ext_str=".seglst.json"):
reference_info_dict = {}
json_filepath_list = open(reference_seglst_list_path).readlines()
for json_path in json_filepath_list:
json_path = json_path.strip()
uniq_id = os.path.split(json_path)[-1].split(ext_str)[0]
if os.path.exists(json_path):
with open(json_path, "r") as file:
json_trans = json.load(file)
else:
raise FileNotFoundError(f"{json_path} does not exist. Aborting.")
json_trans_uniq_id = []
for sentence_dict in json_trans:
sentence_dict['session_id'] = uniq_id
json_trans_uniq_id.append(sentence_dict)
reference_info_dict[uniq_id] = json_trans_uniq_id
return reference_info_dict
def write_seglst_jsons(
seg_lst_sessions_dict: dict,
input_error_src_list_path: str,
diar_out_path: str,
ext_str: str,
write_individual_seglst_jsons=True
):
"""
Writes the segment list (seglst) JSON files to the output directory.
Parameters:
seg_lst_sessions_dict (dict): A dictionary containing session IDs as keys and their corresponding segment lists as values.
input_error_src_list_path (str): The path to the input error source list file.
diar_out_path (str): The path to the output directory where the seglst JSON files will be written.
type_string (str): A string representing the type of the seglst JSON files (e.g., 'hyp' for hypothesis or 'ef' for reference).
write_individual_seglst_jsons (bool, optional): A flag indicating whether to write individual seglst JSON files for each session. Defaults to True.
Returns:
None
"""
total_infer_list = []
total_output_filename = os.path.split(input_error_src_list_path)[-1].replace(".list", "")
for session_id, seg_lst_list in seg_lst_sessions_dict.items():
total_infer_list.extend(seg_lst_list)
if write_individual_seglst_jsons:
print(f"{__INFO_TAG__} Writing {diar_out_path}/{session_id}.seglst.json")
with open(f'{diar_out_path}/{session_id}.seglst.json', 'w') as file:
json.dump(seg_lst_list, file, indent=4) # indent=4 for pretty printing
print(f"{__INFO_TAG__} Writing {diar_out_path}/{session_id}.seglst.json")
total_output_filename = total_output_filename.replace("src", ext_str).replace("ref", ext_str)
with open(f'{diar_out_path}/{total_output_filename}.seglst.json', 'w') as file:
json.dump(total_infer_list, file, indent=4) # indent=4 for pretty printing
|