|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- zh |
|
library_name: transformers |
|
widget: |
|
- text: "<s> [|User|] Hi 👋 </s>[|Assistant|]" |
|
--- |
|
|
|
## MiniChat-1.5-3B |
|
|
|
📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤗 [HuggingFace-MiniMA-2](https://huggingface.co/GeneZC/MiniMA-2-3B) | 🤗 [HuggingFace-MiniChat-2](https://huggingface.co/GeneZC/MiniChat-2-3B) |
|
|
|
🆕 **Updates from MiniChat-3B**: |
|
- better base model MiniMA-2-3B; |
|
- better data mixture; |
|
- use of [NEFTune](https://arxiv.org/abs/2310.05914); |
|
- use of [DPO](https://arxiv.org/abs/2305.18290). |
|
|
|
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2. |
|
|
|
A language model continued from MiniMA-3B and finetuned on both instruction and preference data. |
|
|
|
Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench. |
|
|
|
<img src="./teaser_b.jpg" alt="teaser_b" width="687" /> |
|
|
|
**Standard Benchmarks** |
|
|
|
|Method|TFLOPs|MMLU (5-shot)|CEval (5-shot)|DROP (3-shot)|HumanEval (0-shot)|BBH (3-shot)|GSM8K (8-shot)| |
|
|--|--|--|--|--|--|--|--| |
|
|Mamba-2.8B|4.6E9|25.58|24.74|15.72|7.32|29.37|3.49| |
|
|ShearedLLaMA-2.7B|0.8E9|26.97|22.88|19.98|4.88|30.48|3.56| |
|
|BTLM-3B|11.3E9|27.20|26.00|17.84|10.98|30.87|4.55| |
|
|StableLM-3B|72.0E9|44.75|31.05|22.35|15.85|32.59|10.99| |
|
|Qwen-1.8B|23.8E9|44.05|54.75|12.97|14.02|30.80|22.97| |
|
|Phi-2-2.8B|159.9E9|56.74|34.03|30.74|46.95|44.13|55.42| |
|
|LLaMA-2-7B|84.0E9|46.00|34.40|31.57|12.80|32.02|14.10| |
|
|| |
|
|MiniMA-3B|4.0E9|28.51|28.23|22.50|10.98|31.61|8.11| |
|
|MiniChat-3B|4.0E9|38.40|36.48|22.58|18.29|31.36|29.72| |
|
|MiniMA-2-3B|13.4E9|40.14|44.65|23.10|14.63|31.43|8.87| |
|
|MiniChat-2-3B|13.4E9|46.17|43.91|30.26|22.56|34.95|38.13| |
|
|
|
**Instruction-following Benchmarks** |
|
|
|
|Method|AlpacaEval|MT-Bench| |
|
|--|--|--| |
|
|GPT-4|95.28|9.18| |
|
|Zephyr-7B-Beta|90.60|7.34| |
|
|Phi-2-DPO|81.37|-| |
|
|Vicuna-7B|76.84|6.17| |
|
|LLaMA-2-Chat-7B|71.37|6.27| |
|
|| |
|
|MiniChat-3B|48.82|-| |
|
|MiniChat-2-3B|77.30|6.23| |
|
|
|
The following is an example code snippet to use MiniChat-2-3B: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from conversation import get_default_conv_template |
|
|
|
# MiniChat |
|
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False) |
|
# GPU. |
|
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval() |
|
# CPU. |
|
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval() |
|
|
|
conv = get_default_conv_template("minichat") |
|
|
|
question = "Implement a program to find the common elements in two arrays without using any extra data structures." |
|
conv.append_message(conv.roles[0], question) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer([prompt]).input_ids |
|
output_ids = model.generate( |
|
torch.as_tensor(input_ids).cuda(), |
|
do_sample=True, |
|
temperature=0.7, |
|
max_new_tokens=1024, |
|
) |
|
output_ids = output_ids[0][len(input_ids[0]):] |
|
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip() |
|
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements" |
|
# Multiturn conversation could be realized by continuously appending questions to `conv`. |
|
``` |
|
|
|
## Bibtex |
|
|
|
```bibtex |
|
@article{zhang2023law, |
|
title={Towards the Law of Capacity Gap in Distilling Language Models}, |
|
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan}, |
|
year={2023}, |
|
url={https://arxiv.org/abs/2311.07052} |
|
} |
|
``` |