|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Tuple, Union, Any |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn, Tensor |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import ( |
|
_prepare_4d_attention_mask_for_sdpa, |
|
_prepare_4d_attention_mask, |
|
) |
|
from transformers.modeling_outputs import ( |
|
TokenClassifierOutput, |
|
BaseModelOutput, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput, |
|
) |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
from transformers.utils import ( |
|
logging, |
|
) |
|
|
|
from .configuration_generanno import GenerannoConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "GenerannoConfig" |
|
|
|
|
|
class GenerannoRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
GenerannoRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(GenerannoRMSNorm) |
|
|
|
|
|
class GenerannoRotaryEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
dim=None, |
|
max_position_embeddings=2048, |
|
base=10000, |
|
device=None, |
|
scaling_factor=1.0, |
|
rope_type="default", |
|
config: Optional[GenerannoConfig] = None, |
|
): |
|
super().__init__() |
|
|
|
self.rope_kwargs = {} |
|
if config is None: |
|
logger.warning_once( |
|
"`GenerannoRotaryEmbedding` can now be fully parameterized by passing the model config through the " |
|
"`config` argument. All other arguments will be removed in v4.45" |
|
) |
|
self.rope_kwargs = { |
|
"rope_type": rope_type, |
|
"factor": scaling_factor, |
|
"dim": dim, |
|
"base": base, |
|
"max_position_embeddings": max_position_embeddings, |
|
} |
|
self.rope_type = rope_type |
|
self.max_seq_len_cached = max_position_embeddings |
|
self.original_max_seq_len = max_position_embeddings |
|
else: |
|
|
|
if config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get( |
|
"rope_type", config.rope_scaling.get("type") |
|
) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn( |
|
self.config, device, **self.rope_kwargs |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
""" |
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
1 - growing beyond the cached sequence length (allow scaling) |
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
""" |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len_cached: |
|
inv_freq, self.attention_scaling = self.rope_init_fn( |
|
self.config, device, seq_len=seq_len, **self.rope_kwargs |
|
) |
|
self.register_buffer( |
|
"inv_freq", inv_freq, persistent=False |
|
) |
|
self.max_seq_len_cached = seq_len |
|
|
|
if ( |
|
seq_len < self.original_max_seq_len |
|
and self.max_seq_len_cached > self.original_max_seq_len |
|
): |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if "dynamic" in self.rope_type: |
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
inv_freq_expanded = ( |
|
self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type |
|
device_type = ( |
|
device_type |
|
if isinstance(device_type, str) and device_type != "mps" |
|
else "cpu" |
|
) |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = ( |
|
inv_freq_expanded.float() @ position_ids_expanded.float() |
|
).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
|
|
|
|
cos = cos * self.attention_scaling |
|
sin = sin * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
class GenerannoLinearScalingRotaryEmbedding(GenerannoRotaryEmbedding): |
|
"""GenerannoRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
logger.warning_once( |
|
"`GenerannoLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use " |
|
"`GenerannoRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)." |
|
) |
|
kwargs["rope_type"] = "linear" |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
class GenerannoDynamicNTKScalingRotaryEmbedding(GenerannoRotaryEmbedding): |
|
"""GenerannoRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
logger.warning_once( |
|
"`GenerannoDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use " |
|
"`GenerannoRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to " |
|
"__init__)." |
|
) |
|
kwargs["rope_type"] = "dynamic" |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class GenerannoMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=config.mlp_bias |
|
) |
|
self.up_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=config.mlp_bias |
|
) |
|
self.down_proj = nn.Linear( |
|
self.intermediate_size, self.hidden_size, bias=config.mlp_bias |
|
) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
if self.config.pretraining_tp > 1: |
|
slice = self.intermediate_size // self.config.pretraining_tp |
|
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) |
|
up_proj_slices = self.up_proj.weight.split(slice, dim=0) |
|
down_proj_slices = self.down_proj.weight.split(slice, dim=1) |
|
|
|
gate_proj = torch.cat( |
|
[ |
|
F.linear(x, gate_proj_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
], |
|
dim=-1, |
|
) |
|
up_proj = torch.cat( |
|
[ |
|
F.linear(x, up_proj_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
], |
|
dim=-1, |
|
) |
|
|
|
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) |
|
down_proj = [ |
|
F.linear(intermediate_states[i], down_proj_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
] |
|
down_proj = sum(down_proj) |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class GenerannoAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: GenerannoConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.q_proj = nn.Linear( |
|
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
self.hidden_size, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=config.attention_bias, |
|
) |
|
self.v_proj = nn.Linear( |
|
self.hidden_size, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=config.attention_bias, |
|
) |
|
self.o_proj = nn.Linear( |
|
self.hidden_size, self.hidden_size, bias=config.attention_bias |
|
) |
|
|
|
|
|
self.rotary_emb = GenerannoRotaryEmbedding(config=self.config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
output_attentions: bool = False, |
|
position_embeddings: Optional[ |
|
Tuple[torch.Tensor, torch.Tensor] |
|
] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if self.config.pretraining_tp > 1: |
|
key_value_slicing = ( |
|
self.num_key_value_heads * self.head_dim |
|
) // self.config.pretraining_tp |
|
query_slices = self.q_proj.weight.split( |
|
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 |
|
) |
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) |
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) |
|
|
|
query_states = [ |
|
F.linear(hidden_states, query_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
] |
|
query_states = torch.cat(query_states, dim=-1) |
|
|
|
key_states = [ |
|
F.linear(hidden_states, key_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
] |
|
key_states = torch.cat(key_states, dim=-1) |
|
|
|
value_states = [ |
|
F.linear(hidden_states, value_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
] |
|
value_states = torch.cat(value_states, dim=-1) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
if position_embeddings is None: |
|
logger.warning_once( |
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally " |
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " |
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be " |
|
"removed and `position_embeddings` will be mandatory." |
|
) |
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
else: |
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin |
|
) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul( |
|
query_states, key_states.transpose(2, 3) |
|
) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax( |
|
attn_weights, dim=-1, dtype=torch.float32 |
|
).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.attention_dropout, training=self.training |
|
) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
|
|
if self.config.pretraining_tp > 1: |
|
attn_output = attn_output.split( |
|
self.hidden_size // self.config.pretraining_tp, dim=2 |
|
) |
|
o_proj_slices = self.o_proj.weight.split( |
|
self.hidden_size // self.config.pretraining_tp, dim=1 |
|
) |
|
attn_output = sum( |
|
[ |
|
F.linear(attn_output[i], o_proj_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
] |
|
) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class GenerannoSdpaAttention(GenerannoAttention): |
|
""" |
|
Generanno attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`GenerannoAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
output_attentions: bool = False, |
|
position_embeddings: Optional[ |
|
Tuple[torch.Tensor, torch.Tensor] |
|
] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"GenerannoModel is using GenerannoSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
if position_embeddings is None: |
|
logger.warning_once( |
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally " |
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " |
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be " |
|
"removed and `position_embeddings` will be mandatory." |
|
) |
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
else: |
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin |
|
) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=False, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, -1) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None |
|
|
|
|
|
GENERANNO_ATTENTION_CLASSES = { |
|
"eager": GenerannoAttention, |
|
"sdpa": GenerannoSdpaAttention, |
|
} |
|
|
|
|
|
class GenerannoEncoderLayer(nn.Module): |
|
def __init__(self, config: GenerannoConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = GENERANNO_ATTENTION_CLASSES[config._attn_implementation]( |
|
config=config, layer_idx=layer_idx |
|
) |
|
|
|
self.mlp = GenerannoMLP(config) |
|
self.input_layernorm = GenerannoRMSNorm( |
|
config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
self.post_attention_layernorm = GenerannoRMSNorm( |
|
config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
position_embeddings: Optional[ |
|
Tuple[torch.Tensor, torch.Tensor] |
|
] = None, |
|
**kwargs, |
|
) -> tuple[Tensor | Any]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class GenerannoPreTrainedModel(PreTrainedModel): |
|
config_class = GenerannoConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["GenerannoEncoderLayer"] |
|
_supports_flash_attn_2 = False |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class GenerannoModel(GenerannoPreTrainedModel): |
|
""" |
|
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GenerannoEncoderLayer`] |
|
|
|
Args: |
|
config: GenerannoConfig |
|
""" |
|
|
|
def __init__(self, config: GenerannoConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = nn.ModuleList( |
|
[ |
|
GenerannoEncoderLayer(config, layer_idx) |
|
for layer_idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.norm = GenerannoRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = GenerannoRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> tuple[tuple, ...] | BaseModelOutput: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
0, inputs_embeds.shape[1], device=inputs_embeds.device |
|
).unsqueeze(0) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(inputs_embeds.shape[0], inputs_embeds.shape[1]), |
|
device=inputs_embeds.device, |
|
) |
|
|
|
attention_mask_converter = ( |
|
_prepare_4d_attention_mask_for_sdpa |
|
if self.config._attn_implementation == "sdpa" |
|
else _prepare_4d_attention_mask |
|
) |
|
|
|
attention_mask = attention_mask_converter( |
|
attention_mask, inputs_embeds.dtype, tgt_len=inputs_embeds.shape[1] |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for encoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
output_attentions, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, all_hidden_states, all_self_attns] |
|
if v is not None |
|
) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class GenerannoForMaskedLM(GenerannoPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.model = GenerannoModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_encoder(self, encoder): |
|
self.model = encoder |
|
|
|
def get_encoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
if self.config.pretraining_tp > 1: |
|
lm_head_slices = self.lm_head.weight.split( |
|
self.vocab_size // self.config.pretraining_tp, dim=0 |
|
) |
|
logits = [ |
|
F.linear(hidden_states, lm_head_slices[i]) |
|
for i in range(self.config.pretraining_tp) |
|
] |
|
logits = torch.cat(logits, dim=-1) |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(logits.device) |
|
masked_lm_loss = loss_fct( |
|
logits.view(-1, self.config.vocab_size).float(), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class GenerannoForTokenClassification(GenerannoPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.model = GenerannoModel(config) |
|
self.feature_layer = getattr(config, "feature_layer", -1) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
if getattr(config, "use_mlp_classifier", False): |
|
self.score = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.GELU(), |
|
nn.Dropout(0.1), |
|
nn.Linear(config.hidden_size, self.num_labels, bias=False), |
|
) |
|
|
|
self.label_weights = ( |
|
torch.tensor(config.label_weights) |
|
if hasattr(config, "label_weights") |
|
else None |
|
) |
|
|
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
output_hidden_states = True |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs["hidden_states"][ |
|
self.feature_layer if hasattr(self, "feature_layer") else -1 |
|
] |
|
logits = self.score(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.label_weights is not None: |
|
self.label_weights = self.label_weights.to( |
|
device=logits.device, dtype=logits.dtype |
|
) |
|
loss_fct = CrossEntropyLoss(weight=self.label_weights) |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput(loss=loss, logits=logits) |
|
|
|
|
|
class GenerannoForSequenceClassification(GenerannoPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.model = GenerannoModel(config) |
|
self.feature_layer = getattr(config, "feature_layer", -1) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
if getattr(config, "use_mlp_classifier", False): |
|
self.score = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.GELU(), |
|
nn.Dropout(0.1), |
|
nn.Linear(config.hidden_size, self.num_labels, bias=False), |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
output_hidden_states = True |
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs["hidden_states"][ |
|
self.feature_layer if hasattr(self, "feature_layer") else -1 |
|
] |
|
pooled_hidden_states = hidden_states[:, 0] |
|
logits = self.score(pooled_hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
|
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput(loss=loss, logits=logits) |
|
|