George-Ogden commited on
Commit
7436136
·
1 Parent(s): a38bef0

Add model card

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - glue
7
+ pipeline_tag: text-classification
8
+ ---
9
+ Evaluate on MNLI:
10
+ ```python
11
+ from transformers import (
12
+ default_data_collator,
13
+ AutoTokenizer,
14
+ AutoModelForSequenceClassification,
15
+ Trainer,
16
+ )
17
+ from datasets import load_dataset
18
+
19
+ import functools
20
+
21
+ from utils import compute_metrics, preprocess_function
22
+
23
+ model_name = "George-Ogden/gpt2-finetuned-mnli"
24
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
26
+ trainer = Trainer(
27
+ model=model,
28
+ eval_dataset="mnli",
29
+ tokenizer=tokenizer,
30
+ compute_metrics=compute_metrics,
31
+ data_collator=default_data_collator,
32
+ )
33
+
34
+ raw_datasets = load_dataset(
35
+ "glue",
36
+ "mnli",
37
+ ).map(functools.partial(preprocess_function, tokenizer), batched=True)
38
+
39
+ tasks = ["mnli", "mnli-mm"]
40
+ eval_datasets = [
41
+ raw_datasets["validation_matched"],
42
+ raw_datasets["validation_mismatched"],
43
+ ]
44
+
45
+ for layers in reversed(range(model.num_layers + 1)):
46
+ for eval_dataset, task in zip(eval_datasets, tasks):
47
+ metrics = trainer.evaluate(eval_dataset=eval_dataset)
48
+ metrics["eval_samples"] = len(eval_dataset)
49
+
50
+ if task == "mnli-mm":
51
+ metrics = {k + "_mm": v for k, v in metrics.items()}
52
+
53
+ trainer.log_metrics(metrics)
54
+ ```