File size: 3,838 Bytes
00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 a567fa0 c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 00423dd c123d27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
library_name: transformers
license: llama3.2
---
# FineLlama-3.2-3B-Instruct-ead
This repository contains a fine-tuned version of LLaMa-3.2-3B-Instruct specifically trained to understand and generate EAD (Encoded Archival Description) XML format for archival records description.
## Model Description
* **Base Model**: meta-llama/Llama-3.2-3B-Instruct
* **Training Dataset**: [Geraldine/Ead-Instruct-38k](https://huggingface.co/datasets/Geraldine/Ead-Instruct-38k)
* **Task**: Generation of EAD/XML compliant archival descriptions
* **Training Type**: Instruction fine-tuning with PEFT (Parameter Efficient Fine-Tuning) using LoRA
## Key Features
* Specialized in generating EAD/XML format for archival metadata
* Trained on a comprehensive dataset of EAD/XML examples
* Optimized for archival description tasks
* Memory efficient through 4-bit quantization
## Training Details
### Technical Specifications
* **Quantization**: 4-bit quantization using bitsandbytes
* NF4 quantization type
* Double quantization enabled
* bfloat16 compute dtype
### LoRA Configuration
```
- r: 256
- alpha: 128
- dropout: 0.05
- target modules: all-linear
```
### Training parameters
```
- Epochs: 3
- Batch Size: 3
- Gradient Accumulation Steps: 2
- Learning Rate: 2e-4
- Warmup Ratio: 0.03
- Max Sequence Length: 4096
- Scheduler: Constant
```
### Training Infrastructure
* Libraries: transformers, peft, trl
* Mixed Precision: FP16/BF16 (based on hardware support)
* Optimizer: fused adamw
### Training Notebook
The training Notebook is available on [Kaggle](https://www.kaggle.com/code/geraldinegeoffroy/ead-finetune-llama-3-2-3b-instruct)
## Usage
### Installation
```
pip install transformers torch bitsandbytes
```
### Loading the model
```
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
from peft import PeftModel, PeftConfig
# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model_name = "Geraldine/FineLlama-3.2-3B-Instruct-ead"
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
quantization_config=bnb_config
).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
### Example usage
```
messages = [
{"role": "system", "content": "You are an expert in EAD/XML generation for archival records metadata."},
{"role": "user", "content": "Generate a minimal and compliant <eadheader> template with all required EAD/XML tags"},
]
inputs = tokenizer.apply_chat_template(
messages,
return_dict=True,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
).to("cuda")
outputs = model.generate(**inputs,
max_new_tokens = 4096,
pad_token_id=tokenizer.eos_token_id,
use_cache = True,)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Limitations
* The model is specifically trained for EAD/XML format and may not perform well on general archival tasks
* Performance depends on the quality and specificity of the input prompts
* Maximum sequence length is limited to 4096 tokens
## Citation [optional]
**BibTeX:**
```
@misc{ead-llama,
author = {Géraldine Geoffroy},
title = {EAD-XML LLaMa: Fine-tuned LLaMa Model for Archival Description},
year = {2024},
publisher = {HuggingFace},
journal = {HuggingFace Repository},
howpublished = {\url{https://huggingface.co/Geraldine/FineLlama-3.2-3B-Instruct-ead}}
}
```
## Licence
This model is subject to the same license as the base LLaMa model. Please refer to Meta's LLaMa license for usage terms and conditions. |