|
from skimage import io
|
|
import torch, os
|
|
from PIL import Image
|
|
from briarmbg import BriaRMBG
|
|
from utilities import preprocess_image, postprocess_image
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
def example_inference():
|
|
|
|
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
|
|
|
|
net = BriaRMBG()
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
|
net.to(device)
|
|
net.eval()
|
|
|
|
|
|
model_input_size = [1024,1024]
|
|
orig_im = io.imread(im_path)
|
|
orig_im_size = orig_im.shape[0:2]
|
|
image = preprocess_image(orig_im, model_input_size).to(device)
|
|
|
|
|
|
result=net(image)
|
|
|
|
|
|
result_image = postprocess_image(result[0][0], orig_im_size)
|
|
|
|
|
|
pil_im = Image.fromarray(result_image)
|
|
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
|
orig_image = Image.open(im_path)
|
|
no_bg_image.paste(orig_image, mask=pil_im)
|
|
no_bg_image.save("example_image_no_bg.png")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
example_inference() |