End of training
Browse files- README.md +108 -0
- config.json +39 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: bert-base-chinese
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: Misinformation-Covid-LowLearningRatebert-base-chinese
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Misinformation-Covid-LowLearningRatebert-base-chinese
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5999
|
20 |
+
- F1: 0.2128
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-07
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 50
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| 0.6765 | 1.0 | 189 | 0.6464 | 0.0 |
|
52 |
+
| 0.6809 | 2.0 | 378 | 0.6449 | 0.0 |
|
53 |
+
| 0.6734 | 3.0 | 567 | 0.6651 | 0.0 |
|
54 |
+
| 0.6827 | 4.0 | 756 | 0.6684 | 0.0 |
|
55 |
+
| 0.7095 | 5.0 | 945 | 0.6532 | 0.0 |
|
56 |
+
| 0.7 | 6.0 | 1134 | 0.6646 | 0.0 |
|
57 |
+
| 0.7192 | 7.0 | 1323 | 0.6497 | 0.0 |
|
58 |
+
| 0.6877 | 8.0 | 1512 | 0.6446 | 0.0 |
|
59 |
+
| 0.6831 | 9.0 | 1701 | 0.6305 | 0.0571 |
|
60 |
+
| 0.6633 | 10.0 | 1890 | 0.6203 | 0.1622 |
|
61 |
+
| 0.6668 | 11.0 | 2079 | 0.6219 | 0.1622 |
|
62 |
+
| 0.6482 | 12.0 | 2268 | 0.6242 | 0.1111 |
|
63 |
+
| 0.6543 | 13.0 | 2457 | 0.6117 | 0.15 |
|
64 |
+
| 0.6492 | 14.0 | 2646 | 0.6236 | 0.1622 |
|
65 |
+
| 0.6624 | 15.0 | 2835 | 0.6233 | 0.1622 |
|
66 |
+
| 0.6525 | 16.0 | 3024 | 0.6134 | 0.15 |
|
67 |
+
| 0.6466 | 17.0 | 3213 | 0.6118 | 0.1905 |
|
68 |
+
| 0.6406 | 18.0 | 3402 | 0.6191 | 0.15 |
|
69 |
+
| 0.6479 | 19.0 | 3591 | 0.6216 | 0.1538 |
|
70 |
+
| 0.6488 | 20.0 | 3780 | 0.6076 | 0.2128 |
|
71 |
+
| 0.6352 | 21.0 | 3969 | 0.6062 | 0.2174 |
|
72 |
+
| 0.6213 | 22.0 | 4158 | 0.6042 | 0.2174 |
|
73 |
+
| 0.6285 | 23.0 | 4347 | 0.6100 | 0.2326 |
|
74 |
+
| 0.6298 | 24.0 | 4536 | 0.6076 | 0.2128 |
|
75 |
+
| 0.6473 | 25.0 | 4725 | 0.6058 | 0.2128 |
|
76 |
+
| 0.5972 | 26.0 | 4914 | 0.6065 | 0.2222 |
|
77 |
+
| 0.6118 | 27.0 | 5103 | 0.6001 | 0.25 |
|
78 |
+
| 0.6116 | 28.0 | 5292 | 0.6059 | 0.2128 |
|
79 |
+
| 0.6289 | 29.0 | 5481 | 0.5992 | 0.25 |
|
80 |
+
| 0.5932 | 30.0 | 5670 | 0.6006 | 0.25 |
|
81 |
+
| 0.6076 | 31.0 | 5859 | 0.6009 | 0.2128 |
|
82 |
+
| 0.6033 | 32.0 | 6048 | 0.6082 | 0.2128 |
|
83 |
+
| 0.6235 | 33.0 | 6237 | 0.6023 | 0.2128 |
|
84 |
+
| 0.6237 | 34.0 | 6426 | 0.6079 | 0.2222 |
|
85 |
+
| 0.6176 | 35.0 | 6615 | 0.6081 | 0.2222 |
|
86 |
+
| 0.646 | 36.0 | 6804 | 0.6019 | 0.2128 |
|
87 |
+
| 0.6233 | 37.0 | 6993 | 0.6020 | 0.2128 |
|
88 |
+
| 0.6004 | 38.0 | 7182 | 0.6040 | 0.2174 |
|
89 |
+
| 0.6159 | 39.0 | 7371 | 0.5963 | 0.2449 |
|
90 |
+
| 0.5747 | 40.0 | 7560 | 0.6011 | 0.2174 |
|
91 |
+
| 0.6216 | 41.0 | 7749 | 0.5954 | 0.2449 |
|
92 |
+
| 0.5893 | 42.0 | 7938 | 0.5974 | 0.2083 |
|
93 |
+
| 0.5887 | 43.0 | 8127 | 0.5993 | 0.2128 |
|
94 |
+
| 0.5756 | 44.0 | 8316 | 0.5993 | 0.2128 |
|
95 |
+
| 0.6204 | 45.0 | 8505 | 0.5982 | 0.2083 |
|
96 |
+
| 0.584 | 46.0 | 8694 | 0.5966 | 0.2449 |
|
97 |
+
| 0.5809 | 47.0 | 8883 | 0.5989 | 0.2083 |
|
98 |
+
| 0.5873 | 48.0 | 9072 | 0.6002 | 0.2128 |
|
99 |
+
| 0.5999 | 49.0 | 9261 | 0.6001 | 0.2128 |
|
100 |
+
| 0.5888 | 50.0 | 9450 | 0.5999 | 0.2128 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.32.1
|
106 |
+
- Pytorch 2.1.2
|
107 |
+
- Datasets 2.12.0
|
108 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-chinese",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "No misinformation",
|
14 |
+
"1": "Potential misinformation"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"label2id": {
|
19 |
+
"No misinformation": 0,
|
20 |
+
"Potential misinformation": 1
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_hidden_layers": 12,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"pooler_fc_size": 768,
|
29 |
+
"pooler_num_attention_heads": 12,
|
30 |
+
"pooler_num_fc_layers": 3,
|
31 |
+
"pooler_size_per_head": 128,
|
32 |
+
"pooler_type": "first_token_transform",
|
33 |
+
"position_embedding_type": "absolute",
|
34 |
+
"torch_dtype": "float32",
|
35 |
+
"transformers_version": "4.32.1",
|
36 |
+
"type_vocab_size": 2,
|
37 |
+
"use_cache": true,
|
38 |
+
"vocab_size": 21128
|
39 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e5603d14bcecc769601b0967ff01e09297e938624fbc11033c01d78fc6809b7
|
3 |
+
size 409145582
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": false,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"strip_accents": null,
|
10 |
+
"tokenize_chinese_chars": true,
|
11 |
+
"tokenizer_class": "BertTokenizer",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:173c19a301aaa67e7f4fa41f0226b8cc7840ed36aa2ffe4be66609d47239a8f6
|
3 |
+
size 4536
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|