File size: 2,744 Bytes
d10f197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
[paths]
train = "corpus/train.spacy"
dev = "corpus/dev.spacy"
raw = null
init_tok2vec = null
vectors = null

[system]
seed = 0
gpu_allocator = "pytorch"

[nlp]
lang = "it"
pipeline = ["transformer","textcat"]
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000

[components]

[components.textcat]
factory = "textcat_multilabel"
threshold = 0.5

[components.textcat.model]
@architectures = "spacy.TextCatCNN.v1"
exclusive_classes = false
nO = null

[components.textcat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"

[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}

[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v1"
name = "Musixmatch/umberto-commoncrawl-cased-v1"

[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96

[components.transformer.model.tokenizer_config]
use_fast = true

[corpora]

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
gold_preproc = ${corpora.train.gold_preproc}
max_length = ${corpora.train.max_length}
limit = 0
augmenter = null

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths:train}
gold_preproc = false
max_length = 500
limit = 0
augmenter = null

[training]
train_corpus = "corpora.train"
dev_corpus = "corpora.dev"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
patience = 5000
eval_frequency = 400
dropout = 0.1
max_epochs = 10
max_steps = 0
accumulate_gradient = 3
frozen_components = []
before_to_disk = null

[training.batcher]
@batchers = "spacy.batch_by_sequence.v1"
size = 256
get_length = null

[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false

[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
eps = 0.00000001
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false

[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005

[training.score_weights]
cats_score = 0.5
cats_score_desc = null
cats_micro_p = null
cats_micro_r = null
cats_micro_f = null
cats_macro_p = null
cats_macro_r = null
cats_macro_f = 0.5
cats_macro_auc = null
cats_f_per_type = null
cats_macro_auc_per_type = null

[pretraining]

[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null

[initialize.components]

[initialize.tokenizer]