--- tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_16-7B-slerp - Gille/StrangeMerges_12-7B-slerp base_model: - Gille/StrangeMerges_16-7B-slerp - Gille/StrangeMerges_12-7B-slerp --- # StrangeMerges_17-7B-dare_ties StrangeMerges_17-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_16-7B-slerp](https://huggingface.co/Gille/StrangeMerges_16-7B-slerp) * [Gille/StrangeMerges_12-7B-slerp](https://huggingface.co/Gille/StrangeMerges_12-7B-slerp) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_16-7B-slerp # no parameters necessary for base model - model: Gille/StrangeMerges_16-7B-slerp parameters: density: 0.5 weight: 0.4 - model: Gille/StrangeMerges_12-7B-slerp parameters: density: 0.5 weight: 0.6 merge_method: dare_ties base_model: Gille/StrangeMerges_16-7B-slerp parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_17-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```