Githubturer commited on
Commit
735d6b9
·
1 Parent(s): 8f93b1a

End of training

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - layoutlm_resume_data
6
+ model-index:
7
+ - name: layoutlm-funsd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-funsd
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlm_resume_data dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0076
19
+ - Address: {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 24}
20
+ - Email: {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27}
21
+ - Name: {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39}
22
+ - Phone: {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36}
23
+ - Overall Precision: 0.8769
24
+ - Overall Recall: 0.9048
25
+ - Overall F1: 0.8906
26
+ - Overall Accuracy: 0.9989
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Address | Email | Name | Phone | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.9 | 1.0 | 15 | 0.2150 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 24} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 36} | 0.0 | 0.0 | 0.0 | 0.9757 |
59
+ | 0.1382 | 2.0 | 30 | 0.0885 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 24} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 36} | 0.0 | 0.0 | 0.0 | 0.9757 |
60
+ | 0.0714 | 3.0 | 45 | 0.0499 | {'precision': 0.02040816326530612, 'recall': 0.041666666666666664, 'f1': 0.027397260273972598, 'number': 24} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.6666666666666666, 'recall': 0.16666666666666666, 'f1': 0.26666666666666666, 'number': 36} | 0.1207 | 0.0556 | 0.0761 | 0.9863 |
61
+ | 0.0469 | 4.0 | 60 | 0.0345 | {'precision': 0.14285714285714285, 'recall': 0.25, 'f1': 0.18181818181818182, 'number': 24} | {'precision': 0.875, 'recall': 0.25925925925925924, 'f1': 0.39999999999999997, 'number': 27} | {'precision': 0.34146341463414637, 'recall': 0.358974358974359, 'f1': 0.35000000000000003, 'number': 39} | {'precision': 0.5454545454545454, 'recall': 0.6666666666666666, 'f1': 0.6, 'number': 36} | 0.3778 | 0.4048 | 0.3908 | 0.9910 |
62
+ | 0.0327 | 5.0 | 75 | 0.0232 | {'precision': 0.07692307692307693, 'recall': 0.08333333333333333, 'f1': 0.08, 'number': 24} | {'precision': 0.7, 'recall': 0.7777777777777778, 'f1': 0.7368421052631577, 'number': 27} | {'precision': 0.8333333333333334, 'recall': 0.8974358974358975, 'f1': 0.8641975308641975, 'number': 39} | {'precision': 0.5, 'recall': 0.8055555555555556, 'f1': 0.6170212765957447, 'number': 36} | 0.5577 | 0.6905 | 0.6170 | 0.9943 |
63
+ | 0.0224 | 6.0 | 90 | 0.0168 | {'precision': 0.16, 'recall': 0.16666666666666666, 'f1': 0.16326530612244897, 'number': 24} | {'precision': 0.6363636363636364, 'recall': 0.7777777777777778, 'f1': 0.7000000000000001, 'number': 27} | {'precision': 0.875, 'recall': 0.8974358974358975, 'f1': 0.8860759493670887, 'number': 39} | {'precision': 0.5576923076923077, 'recall': 0.8055555555555556, 'f1': 0.6590909090909091, 'number': 36} | 0.5933 | 0.7063 | 0.6449 | 0.9961 |
64
+ | 0.0163 | 7.0 | 105 | 0.0119 | {'precision': 0.84, 'recall': 0.875, 'f1': 0.8571428571428572, 'number': 24} | {'precision': 0.7857142857142857, 'recall': 0.8148148148148148, 'f1': 0.7999999999999999, 'number': 27} | {'precision': 0.9024390243902439, 'recall': 0.9487179487179487, 'f1': 0.9249999999999999, 'number': 39} | {'precision': 0.7073170731707317, 'recall': 0.8055555555555556, 'f1': 0.7532467532467532, 'number': 36} | 0.8074 | 0.8651 | 0.8352 | 0.9981 |
65
+ | 0.012 | 8.0 | 120 | 0.0100 | {'precision': 0.84, 'recall': 0.875, 'f1': 0.8571428571428572, 'number': 24} | {'precision': 0.7931034482758621, 'recall': 0.8518518518518519, 'f1': 0.8214285714285715, 'number': 27} | {'precision': 0.8809523809523809, 'recall': 0.9487179487179487, 'f1': 0.9135802469135802, 'number': 39} | {'precision': 0.7948717948717948, 'recall': 0.8611111111111112, 'f1': 0.8266666666666667, 'number': 36} | 0.8296 | 0.8889 | 0.8582 | 0.9981 |
66
+ | 0.0097 | 9.0 | 135 | 0.0093 | {'precision': 0.8333333333333334, 'recall': 0.8333333333333334, 'f1': 0.8333333333333334, 'number': 24} | {'precision': 0.7931034482758621, 'recall': 0.8518518518518519, 'f1': 0.8214285714285715, 'number': 27} | {'precision': 0.9024390243902439, 'recall': 0.9487179487179487, 'f1': 0.9249999999999999, 'number': 39} | {'precision': 0.6904761904761905, 'recall': 0.8055555555555556, 'f1': 0.7435897435897436, 'number': 36} | 0.8015 | 0.8651 | 0.8321 | 0.9984 |
67
+ | 0.0077 | 10.0 | 150 | 0.0079 | {'precision': 0.88, 'recall': 0.9166666666666666, 'f1': 0.8979591836734694, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.925, 'recall': 0.9487179487179487, 'f1': 0.9367088607594937, 'number': 39} | {'precision': 0.7948717948717948, 'recall': 0.8611111111111112, 'f1': 0.8266666666666667, 'number': 36} | 0.8561 | 0.8968 | 0.8760 | 0.9987 |
68
+ | 0.0069 | 11.0 | 165 | 0.0084 | {'precision': 0.7916666666666666, 'recall': 0.7916666666666666, 'f1': 0.7916666666666666, 'number': 24} | {'precision': 0.7931034482758621, 'recall': 0.8518518518518519, 'f1': 0.8214285714285715, 'number': 27} | {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39} | {'precision': 0.7948717948717948, 'recall': 0.8611111111111112, 'f1': 0.8266666666666667, 'number': 36} | 0.8346 | 0.8810 | 0.8571 | 0.9986 |
69
+ | 0.0066 | 12.0 | 180 | 0.0079 | {'precision': 0.8333333333333334, 'recall': 0.8333333333333334, 'f1': 0.8333333333333334, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.9047619047619048, 'recall': 0.9743589743589743, 'f1': 0.9382716049382716, 'number': 39} | {'precision': 0.8157894736842105, 'recall': 0.8611111111111112, 'f1': 0.8378378378378377, 'number': 36} | 0.8485 | 0.8889 | 0.8682 | 0.9986 |
70
+ | 0.0058 | 13.0 | 195 | 0.0079 | {'precision': 0.84, 'recall': 0.875, 'f1': 0.8571428571428572, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.9047619047619048, 'recall': 0.9743589743589743, 'f1': 0.9382716049382716, 'number': 39} | {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36} | 0.8561 | 0.8968 | 0.8760 | 0.9989 |
71
+ | 0.0054 | 14.0 | 210 | 0.0077 | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39} | {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36} | 0.8769 | 0.9048 | 0.8906 | 0.9989 |
72
+ | 0.0053 | 15.0 | 225 | 0.0076 | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39} | {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36} | 0.8769 | 0.9048 | 0.8906 | 0.9989 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.0.1+cu118
79
+ - Datasets 2.14.5
80
+ - Tokenizers 0.13.3
logs/events.out.tfevents.1694093852.XPS15-MartinJ CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:23f48aa59069c60c7bdc6920ca757e724e3488641fd996176e28e939af79cb2f
3
- size 14168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bf7cb3b315db2c7507295726ac5d4007c070555a0bfeced39947c98158f9552
3
+ size 14978
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cab5350c1e01cd1f5683e57798a63251ba8da321e33c62644c73eecb77ad69be
3
  size 450651461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e49cbc5d7c9271511732ad30831997ee5212542aa7960bf526b3aab618bc28b
3
  size 450651461
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "cls_token_box": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0
11
+ ],
12
+ "do_basic_tokenize": true,
13
+ "do_lower_case": true,
14
+ "mask_token": "[MASK]",
15
+ "model_max_length": 512,
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "strip_accents": null,
35
+ "tokenize_chinese_chars": true,
36
+ "tokenizer_class": "LayoutLMv2Tokenizer",
37
+ "unk_token": "[UNK]"
38
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff