Commit
·
735d6b9
1
Parent(s):
8f93b1a
End of training
Browse files- README.md +80 -0
- logs/events.out.tfevents.1694093852.XPS15-MartinJ +2 -2
- preprocessor_config.json +14 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +38 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- layoutlm_resume_data
|
6 |
+
model-index:
|
7 |
+
- name: layoutlm-funsd
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# layoutlm-funsd
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlm_resume_data dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0076
|
19 |
+
- Address: {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 24}
|
20 |
+
- Email: {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27}
|
21 |
+
- Name: {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39}
|
22 |
+
- Phone: {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36}
|
23 |
+
- Overall Precision: 0.8769
|
24 |
+
- Overall Recall: 0.9048
|
25 |
+
- Overall F1: 0.8906
|
26 |
+
- Overall Accuracy: 0.9989
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Address | Email | Name | Phone | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
58 |
+
| 1.9 | 1.0 | 15 | 0.2150 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 24} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 36} | 0.0 | 0.0 | 0.0 | 0.9757 |
|
59 |
+
| 0.1382 | 2.0 | 30 | 0.0885 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 24} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 36} | 0.0 | 0.0 | 0.0 | 0.9757 |
|
60 |
+
| 0.0714 | 3.0 | 45 | 0.0499 | {'precision': 0.02040816326530612, 'recall': 0.041666666666666664, 'f1': 0.027397260273972598, 'number': 24} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.6666666666666666, 'recall': 0.16666666666666666, 'f1': 0.26666666666666666, 'number': 36} | 0.1207 | 0.0556 | 0.0761 | 0.9863 |
|
61 |
+
| 0.0469 | 4.0 | 60 | 0.0345 | {'precision': 0.14285714285714285, 'recall': 0.25, 'f1': 0.18181818181818182, 'number': 24} | {'precision': 0.875, 'recall': 0.25925925925925924, 'f1': 0.39999999999999997, 'number': 27} | {'precision': 0.34146341463414637, 'recall': 0.358974358974359, 'f1': 0.35000000000000003, 'number': 39} | {'precision': 0.5454545454545454, 'recall': 0.6666666666666666, 'f1': 0.6, 'number': 36} | 0.3778 | 0.4048 | 0.3908 | 0.9910 |
|
62 |
+
| 0.0327 | 5.0 | 75 | 0.0232 | {'precision': 0.07692307692307693, 'recall': 0.08333333333333333, 'f1': 0.08, 'number': 24} | {'precision': 0.7, 'recall': 0.7777777777777778, 'f1': 0.7368421052631577, 'number': 27} | {'precision': 0.8333333333333334, 'recall': 0.8974358974358975, 'f1': 0.8641975308641975, 'number': 39} | {'precision': 0.5, 'recall': 0.8055555555555556, 'f1': 0.6170212765957447, 'number': 36} | 0.5577 | 0.6905 | 0.6170 | 0.9943 |
|
63 |
+
| 0.0224 | 6.0 | 90 | 0.0168 | {'precision': 0.16, 'recall': 0.16666666666666666, 'f1': 0.16326530612244897, 'number': 24} | {'precision': 0.6363636363636364, 'recall': 0.7777777777777778, 'f1': 0.7000000000000001, 'number': 27} | {'precision': 0.875, 'recall': 0.8974358974358975, 'f1': 0.8860759493670887, 'number': 39} | {'precision': 0.5576923076923077, 'recall': 0.8055555555555556, 'f1': 0.6590909090909091, 'number': 36} | 0.5933 | 0.7063 | 0.6449 | 0.9961 |
|
64 |
+
| 0.0163 | 7.0 | 105 | 0.0119 | {'precision': 0.84, 'recall': 0.875, 'f1': 0.8571428571428572, 'number': 24} | {'precision': 0.7857142857142857, 'recall': 0.8148148148148148, 'f1': 0.7999999999999999, 'number': 27} | {'precision': 0.9024390243902439, 'recall': 0.9487179487179487, 'f1': 0.9249999999999999, 'number': 39} | {'precision': 0.7073170731707317, 'recall': 0.8055555555555556, 'f1': 0.7532467532467532, 'number': 36} | 0.8074 | 0.8651 | 0.8352 | 0.9981 |
|
65 |
+
| 0.012 | 8.0 | 120 | 0.0100 | {'precision': 0.84, 'recall': 0.875, 'f1': 0.8571428571428572, 'number': 24} | {'precision': 0.7931034482758621, 'recall': 0.8518518518518519, 'f1': 0.8214285714285715, 'number': 27} | {'precision': 0.8809523809523809, 'recall': 0.9487179487179487, 'f1': 0.9135802469135802, 'number': 39} | {'precision': 0.7948717948717948, 'recall': 0.8611111111111112, 'f1': 0.8266666666666667, 'number': 36} | 0.8296 | 0.8889 | 0.8582 | 0.9981 |
|
66 |
+
| 0.0097 | 9.0 | 135 | 0.0093 | {'precision': 0.8333333333333334, 'recall': 0.8333333333333334, 'f1': 0.8333333333333334, 'number': 24} | {'precision': 0.7931034482758621, 'recall': 0.8518518518518519, 'f1': 0.8214285714285715, 'number': 27} | {'precision': 0.9024390243902439, 'recall': 0.9487179487179487, 'f1': 0.9249999999999999, 'number': 39} | {'precision': 0.6904761904761905, 'recall': 0.8055555555555556, 'f1': 0.7435897435897436, 'number': 36} | 0.8015 | 0.8651 | 0.8321 | 0.9984 |
|
67 |
+
| 0.0077 | 10.0 | 150 | 0.0079 | {'precision': 0.88, 'recall': 0.9166666666666666, 'f1': 0.8979591836734694, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.925, 'recall': 0.9487179487179487, 'f1': 0.9367088607594937, 'number': 39} | {'precision': 0.7948717948717948, 'recall': 0.8611111111111112, 'f1': 0.8266666666666667, 'number': 36} | 0.8561 | 0.8968 | 0.8760 | 0.9987 |
|
68 |
+
| 0.0069 | 11.0 | 165 | 0.0084 | {'precision': 0.7916666666666666, 'recall': 0.7916666666666666, 'f1': 0.7916666666666666, 'number': 24} | {'precision': 0.7931034482758621, 'recall': 0.8518518518518519, 'f1': 0.8214285714285715, 'number': 27} | {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39} | {'precision': 0.7948717948717948, 'recall': 0.8611111111111112, 'f1': 0.8266666666666667, 'number': 36} | 0.8346 | 0.8810 | 0.8571 | 0.9986 |
|
69 |
+
| 0.0066 | 12.0 | 180 | 0.0079 | {'precision': 0.8333333333333334, 'recall': 0.8333333333333334, 'f1': 0.8333333333333334, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.9047619047619048, 'recall': 0.9743589743589743, 'f1': 0.9382716049382716, 'number': 39} | {'precision': 0.8157894736842105, 'recall': 0.8611111111111112, 'f1': 0.8378378378378377, 'number': 36} | 0.8485 | 0.8889 | 0.8682 | 0.9986 |
|
70 |
+
| 0.0058 | 13.0 | 195 | 0.0079 | {'precision': 0.84, 'recall': 0.875, 'f1': 0.8571428571428572, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.9047619047619048, 'recall': 0.9743589743589743, 'f1': 0.9382716049382716, 'number': 39} | {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36} | 0.8561 | 0.8968 | 0.8760 | 0.9989 |
|
71 |
+
| 0.0054 | 14.0 | 210 | 0.0077 | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39} | {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36} | 0.8769 | 0.9048 | 0.8906 | 0.9989 |
|
72 |
+
| 0.0053 | 15.0 | 225 | 0.0076 | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 24} | {'precision': 0.8214285714285714, 'recall': 0.8518518518518519, 'f1': 0.8363636363636364, 'number': 27} | {'precision': 0.926829268292683, 'recall': 0.9743589743589743, 'f1': 0.9500000000000001, 'number': 39} | {'precision': 0.8378378378378378, 'recall': 0.8611111111111112, 'f1': 0.8493150684931507, 'number': 36} | 0.8769 | 0.9048 | 0.8906 | 0.9989 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.0
|
78 |
+
- Pytorch 2.0.1+cu118
|
79 |
+
- Datasets 2.14.5
|
80 |
+
- Tokenizers 0.13.3
|
logs/events.out.tfevents.1694093852.XPS15-MartinJ
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bf7cb3b315db2c7507295726ac5d4007c070555a0bfeced39947c98158f9552
|
3 |
+
size 14978
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450651461
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e49cbc5d7c9271511732ad30831997ee5212542aa7960bf526b3aab618bc28b
|
3 |
size 450651461
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"apply_ocr": false,
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "[CLS]",
|
6 |
+
"cls_token_box": [
|
7 |
+
0,
|
8 |
+
0,
|
9 |
+
0,
|
10 |
+
0
|
11 |
+
],
|
12 |
+
"do_basic_tokenize": true,
|
13 |
+
"do_lower_case": true,
|
14 |
+
"mask_token": "[MASK]",
|
15 |
+
"model_max_length": 512,
|
16 |
+
"never_split": null,
|
17 |
+
"only_label_first_subword": true,
|
18 |
+
"pad_token": "[PAD]",
|
19 |
+
"pad_token_box": [
|
20 |
+
0,
|
21 |
+
0,
|
22 |
+
0,
|
23 |
+
0
|
24 |
+
],
|
25 |
+
"pad_token_label": -100,
|
26 |
+
"processor_class": "LayoutLMv2Processor",
|
27 |
+
"sep_token": "[SEP]",
|
28 |
+
"sep_token_box": [
|
29 |
+
1000,
|
30 |
+
1000,
|
31 |
+
1000,
|
32 |
+
1000
|
33 |
+
],
|
34 |
+
"strip_accents": null,
|
35 |
+
"tokenize_chinese_chars": true,
|
36 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
37 |
+
"unk_token": "[UNK]"
|
38 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|