{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae231832ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae231832f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae231833010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae2318330a0>", "_build": "<function ActorCriticPolicy._build at 0x7ae231833130>", "forward": "<function ActorCriticPolicy.forward at 0x7ae2318331c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae231833250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae2318332e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae231833370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae231833400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae231833490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae231833520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae231835300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696319615150529315, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECCJ75t5hM/el9eu0c5kb6Zlqy9WEHNOwAAAAAAAAAAE8chPqmqE7zDSVS7u5A3Of6TiL3a5ok6AACAPwAAgD8TekI+FBK2vIWAaDtiwce5sYUfvu6kmLoAAIA/AACAP83I971Gc4s/2MHXvq5KFL8lOGa+1O0RvgAAAAAAAAAApkM1Poj+sbyMH0y7LzvCOcj9I75Xxo06AACAPwAAgD+zE0a9PSojOt9wB7xHGke88H2ZO6sxlD0AAAAAAAAAADONsz3hdLW6Iu8YuyOJdznxuJc5JcENugAAgD8AAIA/+gEivkN+K7zSOzS9iAOHu3pFiz2rZV88AACAPwAAgD8ae0U94RCJuius67YERMaxJP+vOpsqCTYAAIA/AACAP9PHJD6PBli8Ak71OyzJZbohT7a9Js86uwAAAAAAAIA/M59SvLjnsz/yESW/jg0IvmNcVTztY+I9AAAAAAAAAADAaq69rSujPy6Wjr679/y+1wf2vfYQ3r0AAAAAAAAAAJbHdL7UZ9m8eJp0uSIRyLecGz4+EvKOOAAAgD8AAIA/Bt/uvq9xUz+1PoW9Pp4Pv9Z6Ab8Wwei9AAAAAAAAAADzyrI9KeRNumnXL7MFJesxK9kSu42hgTMAAIA/AACAP4A5Tz7WwHw9PFEMPa6IIb6zIps9OBwaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG15G3vx6OaMAWyUTZ4BjAF0lEdAoq6Q6r/823V9lChoBkdAa6JTjvNNamgHTT0BaAhHQKKu3HQQcxV1fZQoaAZHQHNEttuUD+1oB0viaAhHQKKveaESM991fZQoaAZHQGDZrHEMspZoB03oA2gIR0Cir6ThP0qZdX2UKGgGR0BxgqpYLb5/aAdL3mgIR0Cir8ptrKvFdX2UKGgGR0BxMhgOSW7faAdNNgFoCEdAorBMf1YhdXV9lChoBkdAcWFGHpKSPmgHS9VoCEdAougK+WWyDHV9lChoBkdAbQiFg2IfsGgHTaEDaAhHQKLoqzPa+N91fZQoaAZHQHMVw+MZP2xoB0vxaAhHQKLotq7Ackt1fZQoaAZHQHBtuGO+7DloB00GAWgIR0Ci6MLn9vS/dX2UKGgGR0Bw62OxSpBHaAdL5mgIR0Ci6snAZbY9dX2UKGgGR0BvzXapPykLaAdL6GgIR0Ci6/h8IAwPdX2UKGgGR0Bwh3fbblBAaAdL8GgIR0Ci7AB55Z8sdX2UKGgGR0BssFKTSsr/aAdNEQFoCEdAou3z4SHuZ3V9lChoBkdAcS4lyR0U5GgHS89oCEdAou4VP557gXV9lChoBkdAcr9ZTyauwGgHTS0BaAhHQKLuE+eOGTN1fZQoaAZHQHGUlAu7HyVoB014AWgIR0Ci7jsaKk2xdX2UKGgGR0BvzVv4ubqhaAdNCgFoCEdAou7S55JK8XV9lChoBkdAcbZgzguRLmgHS/toCEdAou8R4Oc2BXV9lChoBkdAbydJL/S6UmgHTQEBaAhHQKLvRtix3V11fZQoaAZHQHInpJXhfjVoB02DAmgIR0Ci76YUFjd6dX2UKGgGR0ByB/nIQvpRaAdNmgFoCEdAou/Igmqo63V9lChoBkdAbb+GB4D9wWgHS+JoCEdAovCBv1lGw3V9lChoBkdAcSKbYsd1dWgHS/hoCEdAovIVlXiiqXV9lChoBkdAceWg75mAb2gHS/toCEdAovIhJGvwE3V9lChoBkdAcekoA4n4PGgHS9VoCEdAovMk0+C9RXV9lChoBkdAcZ7xW1c+q2gHS+RoCEdAovPoFeOXFHV9lChoBkdAcYaz/6wdKmgHS/BoCEdAovP1du5z53V9lChoBkdAchGFkQPI4mgHS9hoCEdAovRSEi+tbXV9lChoBkdAbgVQb+98JGgHS+poCEdAovZBCSidrnV9lChoBkdAcNvGMGX5WWgHTQEBaAhHQKL2fHfdhy91fZQoaAZHQHKtphrnDBNoB0viaAhHQKL3hxTbWVh1fZQoaAZHQGHOepn6EaloB03oA2gIR0Ci95C1Z1V6dX2UKGgGR0BdMNtygf2caAdN6ANoCEdAovewrtmcv3V9lChoBkdAYHIOuq3mWGgHTegDaAhHQKL326ij+Jh1fZQoaAZHQHAIsKTjebdoB00ZAWgIR0Ci+CsrmQr+dX2UKGgGR0Bxl3336AOKaAdL52gIR0Ci+ZccU/OddX2UKGgGR0BxPB0cOskqaAdNBQFoCEdAovqWwPiDNHV9lChoBkdAcEOX4CZF5WgHS+ZoCEdAovt2mUGFBnV9lChoBkdAcOwNHYpUgmgHTQMBaAhHQKL7uZof0Vd1fZQoaAZHQGni5+YtxuNoB00aAWgIR0Ci/SXPZ7HAdX2UKGgGR0BweBKoQ4CIaAdL6mgIR0Ci/av6j323dX2UKGgGR0Bg+CU3XI2gaAdN6ANoCEdAov31vKlpGnV9lChoBkdAcTADa4+bE2gHTQABaAhHQKL+iHAymAN1fZQoaAZHQG7YOgYgq3FoB0vpaAhHQKL+v2/zreJ1fZQoaAZHQG4jv/rB0p5oB01MAWgIR0Ci/wq7ZnL8dX2UKGgGR0BvLuy9mHxjaAdNTAJoCEdAov9U9Oh0yXV9lChoBkdAbA+xptaY/mgHS/5oCEdAov/Oi1y/9HV9lChoBkdAcoiajN6gNGgHTQoBaAhHQKL/1J2dNFl1fZQoaAZHQHIf3nhbW3BoB00kAWgIR0CjAEJCrtE5dX2UKGgGR0BvfAu9OARTaAdL42gIR0CjAOdf1HvudX2UKGgGR0Bug0NhE0BPaAdNDAFoCEdAowEUdq+JxnV9lChoBkdAbjc6mO2iL2gHS+5oCEdAowGj81n/UHV9lChoBkdAcHtDL8rI52gHS/hoCEdAowH75qM3qHV9lChoBkdAcrjqqwQlKWgHS89oCEdAowIRyU9py3V9lChoBkdAcr/nb7CSBGgHS/doCEdAowMklzEJjXV9lChoBkdAcRsBreqJdmgHS+ZoCEdAowNf24/eL3V9lChoBkdAbIovUSZjQWgHS/FoCEdAowO+eg+Ql3V9lChoBkdAbpG/LTx5LWgHS/ZoCEdAowQT6eoUBXV9lChoBkdAcefqynk1dmgHTR8BaAhHQKMEJgzguRN1fZQoaAZHQHAMZVXFLnNoB0vraAhHQKMEZIre67N1fZQoaAZHQHHFLSeAd4poB00AAWgIR0CjBSpfpljFdX2UKGgGR0Bw9U5NoJzDaAdNMAFoCEdAowVp/3Fkx3V9lChoBkdAcVCRTCLuQmgHS/FoCEdAowXWSSvC/HV9lChoBkdAb4d5YYBNmGgHTTABaAhHQKMHErEtNBZ1fZQoaAZHQHF15IYm9g5oB00TAWgIR0CjB7a9TP0JdX2UKGgGR0Bye99H+ZPVaAdNDwFoCEdAowe2UliSaHV9lChoBkdAcdlDiOvMbGgHS9loCEdAowgHctXgcnV9lChoBkdAb7q+HJtBOmgHS+9oCEdAowhHoLXtjXV9lChoBkdAXy2QOnVG1GgHTegDaAhHQKMIt9G7SRd1fZQoaAZHQG4K2kJrtVtoB0vdaAhHQKMI6TcqOLl1fZQoaAZHQHERk8FINExoB0vYaAhHQKMJFWdVea91fZQoaAZHQG0EbsniNsFoB0v/aAhHQKMJOMmWt2d1fZQoaAZHQG/150CA+ZBoB0vbaAhHQKMKwlfqoqF1fZQoaAZHQHB9sw1zhgpoB0vmaAhHQKMMbWyTpxF1fZQoaAZHQHC1LIcR15loB02NAWgIR0CjDSGh24d7dX2UKGgGR0BxIwZIg/1QaAdL/GgIR0CjDjS+g13udX2UKGgGR0Bv+b8xbjcVaAdL+mgIR0CjDn/UWl/IdX2UKGgGR0BxTZaOgg5jaAdNgQFoCEdAow67xoZhrnV9lChoBkdAcCFx+8XenGgHTSABaAhHQKMO3TefqX51fZQoaAZHQG6ssNUfgaZoB0vxaAhHQKMPCS2Yv391fZQoaAZHQHDaKz7di2FoB0v2aAhHQKMPjB3zMA51fZQoaAZHQGuxwwCbMHNoB00VAWgIR0CjD7PjOs1bdX2UKGgGR0BgVvXTVlPKaAdN6ANoCEdAoxAJxvNu+HV9lChoBkdAcKqH1e0G/2gHS+poCEdAoxDEzCUHIXV9lChoBkdAb+VN2TxG2GgHS/loCEdAoxM3BSDRMXV9lChoBkdAc0I7rcCYC2gHS95oCEdAoxO9WCEpRXV9lChoBkdAb9se6I3zc2gHS9loCEdAoxPXDrJKa3V9lChoBkdAcJoZM+NcW2gHTQEBaAhHQKMUj6Y3Ns51fZQoaAZHQHDAazZ6D5FoB0vcaAhHQKMVTlQMx491fZQoaAZHQHF1UDQqqfhoB00DAWgIR0CjFX8y31BddX2UKGgGR0BuzR8WsRxtaAdL72gIR0CjFby/TLGJdX2UKGgGR0BvlI95hSccaAdNFAFoCEdAoxZKTr3TNXV9lChoBkdAapnPqLS/kGgHTdQDaAhHQKMXBgUlAu91fZQoaAZHQHB1EJjUd7xoB0v4aAhHQKMX4EMb3oN1fZQoaAZHQHFx+PJaJRBoB0vMaAhHQKMaxa5f+jx1fZQoaAZHQGHcUdq+JxhoB03oA2gIR0CjGu8rAgxKdX2UKGgGR0Bx2lYnv2GqaAdNHgFoCEdAox0BCUornXV9lChoBkdAcOF2q1gH/2gHS9doCEdAox0K6H0sfHV9lChoBkdAbxIgB91EE2gHS/VoCEdAox3z/MnqmnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |