File size: 1,737 Bytes
532ec37 cb68000 532ec37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: microsoft-deberta-v3-large_cls_sst2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft-deberta-v3-large_cls_sst2
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on [sst2](https://huggingface.co/datasets/sst2) unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2206
- Accuracy: 0.9576
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 433 | 0.2420 | 0.9415 |
| 0.3716 | 2.0 | 866 | 0.2387 | 0.9404 |
| 0.2001 | 3.0 | 1299 | 0.2379 | 0.9461 |
| 0.1187 | 4.0 | 1732 | 0.2007 | 0.9610 |
| 0.0555 | 5.0 | 2165 | 0.2206 | 0.9576 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|