|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- reddit_tifu |
|
metrics: |
|
- rouge |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Bart_reddit_tifu |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: reddit_tifu |
|
type: reddit_tifu |
|
config: long |
|
split: train |
|
args: long |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.2709 |
|
- name: Precision |
|
type: precision |
|
value: 0.8768 |
|
- name: Recall |
|
type: recall |
|
value: 0.8648 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8705 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Bart_reddit_tifu |
|
|
|
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the reddit_tifu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5035 |
|
- Rouge1: 0.2709 |
|
- Rouge2: 0.0948 |
|
- Rougel: 0.2244 |
|
- Rougelsum: 0.2244 |
|
- Gen Len: 19.3555 |
|
- Precision: 0.8768 |
|
- Recall: 0.8648 |
|
- F1: 0.8705 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| |
|
| 2.6968 | 1.0 | 2370 | 2.5385 | 0.2634 | 0.0907 | 0.218 | 0.2182 | 19.4438 | 0.8766 | 0.8641 | 0.8701 | |
|
| 2.4746 | 2.0 | 4741 | 2.5077 | 0.273 | 0.0941 | 0.2238 | 0.2239 | 19.2572 | 0.8774 | 0.8655 | 0.8712 | |
|
| 2.3066 | 3.0 | 7111 | 2.5012 | 0.2671 | 0.0936 | 0.221 | 0.2211 | 19.3071 | 0.8756 | 0.864 | 0.8696 | |
|
| 2.2041 | 4.0 | 9480 | 2.5035 | 0.2709 | 0.0948 | 0.2244 | 0.2244 | 19.3555 | 0.8768 | 0.8648 | 0.8705 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.15.0 |
|
|