GodfreyOwino
commited on
Update: Add custom NPKPredictionModel implementation
Browse files- config.json +5 -4
- modeling_npk.py +13 -13
config.json
CHANGED
@@ -2,7 +2,8 @@
|
|
2 |
"model_type": "npk",
|
3 |
"architectures": ["NPKPredictionModel"],
|
4 |
"auto_map": {
|
5 |
-
|
6 |
-
|
7 |
-
}
|
8 |
-
|
|
|
|
2 |
"model_type": "npk",
|
3 |
"architectures": ["NPKPredictionModel"],
|
4 |
"auto_map": {
|
5 |
+
"AutoConfig": "modeling_npk.NPKConfig",
|
6 |
+
"AutoModel": "modeling_npk.NPKPredictionModel"
|
7 |
+
},
|
8 |
+
"trust_remote_code": true
|
9 |
+
}
|
modeling_npk.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import pickle
|
3 |
import pandas as pd
|
4 |
from transformers import PreTrainedModel, PretrainedConfig
|
@@ -17,6 +16,18 @@ class NPKPredictionModel(PreTrainedModel):
|
|
17 |
super().__init__(config)
|
18 |
self.xgb_model = None
|
19 |
self.label_encoder = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def forward(self, inputs):
|
22 |
# Preprocess inputs
|
@@ -48,15 +59,4 @@ class NPKPredictionModel(PreTrainedModel):
|
|
48 |
config = NPKConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
49 |
|
50 |
model = cls(config)
|
51 |
-
|
52 |
-
# Load the XGBoost model and label encoder
|
53 |
-
xgb_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="npk_prediction_model.pkl")
|
54 |
-
le_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="label_encoder.pkl")
|
55 |
-
|
56 |
-
with open(xgb_path, 'rb') as f:
|
57 |
-
model.xgb_model = pickle.load(f)
|
58 |
-
|
59 |
-
with open(le_path, 'rb') as f:
|
60 |
-
model.label_encoder = pickle.load(f)
|
61 |
-
|
62 |
-
return model
|
|
|
|
|
1 |
import pickle
|
2 |
import pandas as pd
|
3 |
from transformers import PreTrainedModel, PretrainedConfig
|
|
|
16 |
super().__init__(config)
|
17 |
self.xgb_model = None
|
18 |
self.label_encoder = None
|
19 |
+
self._load_models()
|
20 |
+
|
21 |
+
def _load_models(self):
|
22 |
+
# Load the XGBoost model and label encoder
|
23 |
+
xgb_path = hf_hub_download(repo_id=self.config._name_or_path, filename="npk_prediction_model.pkl")
|
24 |
+
le_path = hf_hub_download(repo_id=self.config._name_or_path, filename="label_encoder.pkl")
|
25 |
+
|
26 |
+
with open(xgb_path, 'rb') as f:
|
27 |
+
self.xgb_model = pickle.load(f)
|
28 |
+
|
29 |
+
with open(le_path, 'rb') as f:
|
30 |
+
self.label_encoder = pickle.load(f)
|
31 |
|
32 |
def forward(self, inputs):
|
33 |
# Preprocess inputs
|
|
|
59 |
config = NPKConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
60 |
|
61 |
model = cls(config)
|
62 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|