GoodiesHere's picture
Upload folder using huggingface_hub
4b87979 verified
# modeling_internvideo2.py
import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.utils import logging as hf_logging
from torch.utils.checkpoint import checkpoint # Correct
from functools import partial
from .configuration_internvideo2 import InternVideo2Config # Import the configuration
try:
from einops import rearrange
except ImportError:
raise ImportError("Please install einops to use this model.")
try:
from timm.models.layers import DropPath, to_2tuple
except ImportError:
raise ImportError("Please install timm to use this model.")
logger = hf_logging.get_logger(__name__)
# Position embedding functions
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
assert embed_dim % 4 == 0
embed_dim_spatial = embed_dim // 4 * 3
embed_dim_temporal = embed_dim // 4
# Spatial
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # W first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
# Temporal
grid_t = np.arange(t_size, dtype=np.float32)
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)
# Combine spatial and temporal embeddings
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
pos_embed_temporal = np.repeat(pos_embed_temporal, grid_size**2, axis=1)
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
pos_embed_spatial = np.repeat(pos_embed_spatial, t_size, axis=0)
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
pos_embed = pos_embed.reshape([-1, embed_dim])
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
emb = np.concatenate([emb_h, emb_w], axis=1)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / (10000 ** omega)
pos = pos.reshape(-1)
out = np.einsum('m,d->md', pos, omega)
emb_sin = np.sin(out)
emb_cos = np.cos(out)
emb = np.concatenate([emb_sin, emb_cos], axis=1)
return emb
# Define necessary classes: CrossAttention, AttentiveBlock, AttentionPoolingBlock, RMSNorm, LayerScale, Attention, Mlp, Block, PatchEmbed, Linear_Decoder
class CrossAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
attn_head_dim=None,
out_dim=None,
):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = (
q.reshape(B, N, 1, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.squeeze(0)
) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = (
k.reshape(B, N_k, 1, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.squeeze(0)
)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = (
v.reshape(B, N_v, 1, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.squeeze(0)
)
q = q * self.scale
attn = q @ k.transpose(-2, -1) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
attn_head_dim=None,
out_dim=None,
):
super().__init__()
self.norm1_q = norm_layer(dim)
self.norm1_k = norm_layer(dim)
self.norm1_v = norm_layer(dim)
self.cross_attn = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim,
out_dim=out_dim,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(
self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None
):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_attn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv, pos_q, pos_k = x, 0, 0
x = super().forward(
x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None
)
x = x.squeeze(1)
return x
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(
variance + self.variance_epsilon
)
return self.weight * hidden_states.to(input_dtype)
class LayerScale(nn.Module):
def __init__(
self, dim, init_values=1e-5, inplace=False, force_fp32=False
):
super().__init__()
self.inplace = inplace
self.weight = nn.Parameter(init_values * torch.ones(dim))
self.force_fp32 = force_fp32
@torch.cuda.amp.autocast(enabled=False)
def forward(self, x):
if self.force_fp32:
output_type = x.dtype
out = (
x.float().mul_(self.weight.float())
if self.inplace
else x.float() * self.weight.float()
)
return out.to(dtype=output_type)
else:
out = x.mul_(self.weight) if self.inplace else x * self.weight
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
use_flash_attn=False,
causal=False,
norm_layer=nn.LayerNorm,
qk_normalization=False,
use_fused_rmsnorm=False,
):
super().__init__()
assert (
dim % num_heads == 0
), "dim should be divisible by num_heads"
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.use_flash_attn = use_flash_attn
if use_flash_attn:
self.causal = causal
try:
from flash_attn.flash_attention import FlashAttention
self.inner_attn = FlashAttention(
attention_dropout=attn_drop
)
except ImportError:
raise ImportError(
"Please install flash_attn to use flash attention."
)
self.qk_normalization = qk_normalization
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.use_fused_rmsnorm = use_fused_rmsnorm
def _naive_attn(self, x):
B, N, C = x.shape
# print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(
0
) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = (
self.q_norm(q.transpose(1, 2).flatten(-2, -1))
.view(B_, N_, H_, D_)
.transpose(1, 2)
)
k = (
self.k_norm(k.transpose(1, 2).flatten(-2, -1))
.view(B_, N_, H_, D_)
.transpose(1, 2)
)
attn = (q * self.scale) @ k.transpose(-2, -1)
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(
self, x, key_padding_mask=None, need_weights=False
):
qkv = self.qkv(x)
qkv = rearrange(
qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads
)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
if self.use_fused_rmsnorm:
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
else:
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
causal=self.causal,
)
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
outs = self.proj_drop(outs)
return outs
def forward(self, x):
x = (
self._naive_attn(x)
if not self.use_flash_attn
else self._flash_attn(x)
)
return x
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
bias=True,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
drop=0.0,
attn_drop=0.0,
init_values=None,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_flash_attn=False,
use_fused_mlp=False,
fused_mlp_heuristic=1,
with_cp=False,
qk_normalization=False,
layerscale_no_force_fp32=False,
use_fused_rmsnorm=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
use_flash_attn=use_flash_attn,
causal=False,
norm_layer=norm_layer,
qk_normalization=qk_normalization,
use_fused_rmsnorm=use_fused_rmsnorm,
)
self.ls1 = (
LayerScale(
dim,
init_values=init_values,
force_fp32=(not layerscale_no_force_fp32),
)
if init_values
else nn.Identity()
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if use_fused_mlp:
try:
from flash_attn.modules.mlp import FusedMLP
except ImportError:
raise ImportError(
"Please install flash_attn to use fused MLP."
)
self.mlp = FusedMLP(
in_features=dim,
hidden_features=mlp_hidden_dim,
heuristic=fused_mlp_heuristic,
)
else:
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.ls2 = (
LayerScale(
dim,
init_values=init_values,
force_fp32=(not layerscale_no_force_fp32),
)
if init_values
else nn.Identity()
)
self.drop_path2 = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.with_cp = with_cp
self.use_fused_rmsnorm = use_fused_rmsnorm
def forward(self, x, residual=None):
def _inner_forward(x, residual=None):
if self.use_fused_rmsnorm:
x, residual = self.norm1(x, residual)
x = self.drop_path1(self.ls1(self.attn(x)))
x, residual = self.norm2(x, residual)
x = self.drop_path2(self.ls2(self.mlp(x)))
return x, residual
else:
assert residual is None
x = x + self.drop_path1(
self.ls1(self.attn(self.norm1(x)))
)
x = x + self.drop_path2(
self.ls2(self.mlp(self.norm2(x)))
)
return x
if self.with_cp:
return checkpoint(_inner_forward, x, residual)
else:
return _inner_forward(x, residual=residual)
class PatchEmbed(nn.Module):
"""3D Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
num_frames=8,
tubelet_size=1,
norm_layer=None,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
) # (T, H, W)
self.num_patches = (
self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
)
self.num_img_patches = self.grid_size[1] * self.grid_size[2]
self.proj = nn.Conv3d(
in_channels=in_chans,
out_channels=embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1]),
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = (
x.flatten(3)
.permute(0, 2, 3, 1)
) # B x C x T x HW => B x T x HW x C
x = self.norm(x)
return x
class Linear_Decoder(nn.Module):
def __init__(self, in_channels=1408, out_channels=3200, norm_layer=nn.LayerNorm, clip_norm_type='l2'):
super().__init__()
self.clip_norm_type = clip_norm_type
logger.info(f'Normalization Type: {clip_norm_type}')
self.head = nn.Linear(in_channels, out_channels)
self.norm = norm_layer(out_channels)
def forward(self, x):
x = self.norm(self.head(x))
if self.clip_norm_type == 'l2':
x = x / x.norm(dim=-1, keepdim=True)
elif self.clip_norm_type == 'none':
pass
else:
raise NotImplementedError
return x
class InternVideo2Model(PreTrainedModel):
config_class = InternVideo2Config
base_model_prefix = "internvideo2"
def __init__(self, config: InternVideo2Config):
super().__init__(config)
in_chans = 3
drop_path_rate = 0.25
qk_normalization = config.qk_normalization
clip_embed_dim = config.clip_embed_dim
num_heads = config.num_heads
qkv_bias = config.qkv_bias
init_values = config.init_values
mlp_ratio = config.mlp_ratio
depth = config.depth
num_frames = config.num_frames
self.num_frames = num_frames
self.tubelet_size = config.tubelet_size
use_fused_mlp = config.use_fused_mlp
use_fused_rmsnorm = config.use_fused_rmsnorm
use_flash_attn = config.use_flash_attn
assert (
use_flash_attn
== use_fused_rmsnorm
== use_fused_mlp
), "use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent"
self.use_flash_attn = use_flash_attn
embed_dim = config.d_model
self.embed_dim = embed_dim
self.depth = depth
self.clip_norm_type = config.clip_norm_type
self.return_index = []
for i in range(config.clip_return_layer):
self.return_index.append(
depth - int(i * config.clip_student_return_interval) - 1
)
logger.info(f"Normalization Type: {config.clip_norm_type}")
logger.info(f"Student Return Index: {self.return_index}")
if use_fused_rmsnorm:
try:
from flash_attn.ops.rms_norm import DropoutAddRMSNorm
except ImportError:
raise ImportError(
"Please install flash_attn to use fused RMSNorm."
)
norm_layer_for_blocks = partial(
DropoutAddRMSNorm, eps=1e-6, prenorm=True
)
else:
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
self.norm_layer_for_blocks = norm_layer_for_blocks
self.patch_embed = PatchEmbed(
config.img_size,
config.patch_size,
in_chans,
embed_dim,
num_frames=num_frames,
tubelet_size=self.tubelet_size,
)
num_patches = self.patch_embed.num_patches
num_img_patches = self.patch_embed.num_img_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.sep_pos_embed = False
self.sep_image_video_pos_embed = config.sep_image_video_pos_embed
if self.sep_pos_embed:
raise NotImplementedError
else:
if self.sep_image_video_pos_embed:
logger.info(
"Use joint position embedding, for image and video we use different pos_embed."
)
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
self.img_pos_embed = nn.Parameter(
torch.zeros(1, num_img_patches + 1, embed_dim)
)
# for CLIP decoder
self.clip_pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
self.clip_img_pos_embed = nn.Parameter(
torch.zeros(1, num_img_patches + 1, embed_dim)
)
else:
logger.info(
"Use joint position embedding, for image and video we use same pos_embed."
)
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
self.clip_pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
# choose which layer to use checkpoint
with_cp_list = [False] * depth
if config.use_checkpoint:
for idx in range(depth):
if idx < config.checkpoint_num:
with_cp_list[idx] = True
logger.info(f"Droppath rate: {dpr}")
logger.info(f"Checkpoint list: {with_cp_list}")
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer_for_blocks,
drop_path=dpr[i],
init_values=init_values,
attn_drop=0.0,
use_flash_attn=use_flash_attn,
use_fused_mlp=use_fused_mlp,
fused_mlp_heuristic=1,
with_cp=with_cp_list[i],
qk_normalization=qk_normalization,
layerscale_no_force_fp32=False,
use_fused_rmsnorm=use_fused_rmsnorm,
)
for i in range(depth)
]
)
self.clip_projector = AttentionPoolingBlock(
dim=embed_dim,
num_heads=config.attn_pool_num_heads,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-5),
out_dim=clip_embed_dim,
)
# CLIP decoder
self.clip_decoder = nn.ModuleList(
[
Linear_Decoder(
in_channels=embed_dim,
out_channels=config.clip_teacher_embed_dim,
norm_layer=partial(nn.LayerNorm, eps=1e-5),
clip_norm_type=config.clip_norm_type,
)
for _ in range(config.clip_return_layer)
]
)
self.final_clip_decoder = nn.Identity()
if config.clip_teacher_final_dim > 0:
self.final_clip_decoder = Linear_Decoder(
in_channels=clip_embed_dim,
out_channels=config.clip_teacher_final_dim,
norm_layer=partial(nn.LayerNorm, eps=1e-5),
clip_norm_type=config.clip_norm_type,
)
# Removed initialization methods and code
@property
def dtype(self):
return self.patch_embed.proj.weight.dtype
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {
"pos_embed",
"pos_embed_spatial",
"pos_embed_temporal",
"pos_embed_cls",
"img_pos_embed",
"cls_token",
"clip_pos_embed",
"clip_pos_embed_spatial",
"clip_pos_embed_temporal",
"clip_pos_embed_cls",
"clip_img_pos_embed",
}
def forward(
self,
x,
mask=None,
use_image=False,
x_vis_return_idx=-1,
x_vis_only=False,
):
x = self.patch_embed(x.type(self.dtype))
B, T, L, C = x.shape
x = x.view([B, T * L, C])
# Append cls token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# Add positional embeddings
if self.sep_pos_embed:
raise NotImplementedError
else:
if use_image:
if self.sep_image_video_pos_embed:
pos_embed = self.img_pos_embed
else:
cls_pos_embed = self.pos_embed[:, 0:1, :]
img_pos_embed = (
self.pos_embed[:, 1:, :]
.view(
1,
self.num_frames,
self.patch_embed.num_patches // self.num_frames,
self.embed_dim,
)
.mean(dim=1)
)
pos_embed = torch.cat(
[cls_pos_embed, img_pos_embed], dim=1
)
else:
pos_embed = self.pos_embed
x = x + pos_embed
# Mask tokens
if mask is not None:
x = x[~mask].reshape(B, -1, C)
else:
x = x.reshape(B, -1, C)
residual = None
x_clip = []
for idx, blk in enumerate(self.blocks):
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
x = blk(x, residual=residual)
# Return intermediate features
if idx in self.return_index:
if isinstance(x, tuple) and len(x) == 2:
tmp_x, tmp_residual = x
if residual is not None:
x_clip.append(tmp_x + tmp_residual)
else:
x_clip.append(x)
if idx == (self.depth + x_vis_return_idx):
break
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
if residual is not None:
x = x + residual
x_vis = x
if x_vis_only:
return x_vis
x_pool_vis = self.clip_projector(x_vis)
x_align = self.final_clip_decoder(x_pool_vis)
# Align CLIP
x_clip = torch.stack(x_clip)
K, B, _, C_CLIP = x_clip.shape
# Add positional embeddings
if self.sep_pos_embed:
raise NotImplementedError
else:
if use_image:
if self.sep_image_video_pos_embed:
clip_pos_embed = self.clip_img_pos_embed
else:
clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :]
clip_img_pos_embed = (
self.clip_pos_embed[:, 1:, :]
.view(
1,
self.num_frames,
self.patch_embed.num_patches // self.num_frames,
self.embed_dim,
)
.mean(dim=1)
)
clip_pos_embed = torch.cat(
[clip_cls_pos_embed, clip_img_pos_embed], dim=1
)
else:
clip_pos_embed = self.clip_pos_embed
clip_pos_embed = clip_pos_embed.repeat(B, 1, 1)
if mask is not None:
x_clip = x_clip + clip_pos_embed[~mask].view(
B, -1, C_CLIP
).unsqueeze(0).repeat(K, 1, 1, 1)
else:
x_clip = x_clip + clip_pos_embed.view(B, -1, C_CLIP).unsqueeze(
0
).repeat(K, 1, 1, 1)
# CLIP decoder
x_clip_align = []
for idx, clip_decoder in enumerate(self.clip_decoder):
x_clip_align.append(clip_decoder(x_clip[idx]))
x_clip_align = torch.stack(x_clip_align)
return x_vis, x_pool_vis, x_clip_align, x_align
def load_pretrained_weights(self):
if self.config.pretrained is not None:
logger.info(f"Loading pretrained weights from {self.config.pretrained}")
state_dict = torch.load(self.config.pretrained, map_location='cpu')
# Rename 'ls1.weight' to 'ls1.weight' and 'ls2.weight' to 'ls2.weight'
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith('.ls1.weight'):
new_key = key.replace('.ls1.weight', '.ls1.weight')
new_state_dict[new_key] = value
elif key.endswith('.ls2.weight'):
new_key = key.replace('.ls2.weight', '.ls2.weight')
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
# Load the adjusted state_dict
message = self.load_state_dict(new_state_dict, strict=False)
logger.info(message)
else:
logger.info("No pretrained weights provided.")