{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1db6075d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735699169979480007, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMltDyPeiy61YYZu6KgGTbMQ6e7jFIzOgAAgD8AAIA/8/XBPUhjkLqbpXW7bVVgOAjo3DpHrgo6AACAPwAAAACarpE9w/F/uqS8ybuEDJo2WB1cucIvCbYAAIA/AACAP0B3uz1IEYW6lnmVu6C5Fziy/QC7Fo8XtwAAgD8AAIA/ZtbrOykoc7oCjX07XCkNNxy8QjuT8pC6AACAPwAAgD/aSLc9XPNvunYuZbuABkC19P+SuowihjoAAIA/AACAP40J2T1II5S6I5rSOlX/oTVZeBc4g/XzuQAAAAAAAIA/zai4O/F3dzxba4q9VH/ZvdkYubwJQgu9AAAAAAAAAABmPNk8w5kRuk4qQTuRlVo2w1ZOuR3OZroAAIA/AACAPxqOAD0p+B66ebqiOjP0MbX1WV+7WCm9uQAAgD8AAIA/s6OHPXvWlrrtioW7QwPOttO27DjqlTo2AACAPwAAgD9z0LI9lfQHPxvvW735amW+6u+GO0bVCb0AAAAAAAAAAM3IA7z0vpA/SKcLvZ7fvL5MwJK8JH6kuwAAAAAAAAAAbS4KvlmWmT/i+a2+lEiMvrNvK76NO/y9AAAAAAAAAACas1o9pIA2uagycjqV2MK1+IwqunmhkLkAAIA/AACAPzM5Ob1Ntxg/1B0IPeUSVr4lCNG8joLePAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFw/2y9mHxmMAWyUTegDjAF0lEdAk0P71/Ue+3V9lChoBkdAYuoZJCjUNWgHTegDaAhHQJNFDsC1Z1V1fZQoaAZHQGMd77Kq4pdoB03oA2gIR0CTRS9ehPCVdX2UKGgGR0Bfkmy5Zr57aAdN6ANoCEdAk0dtFz+3pnV9lChoBkdAY5eraM72c2gHTegDaAhHQJNMq8ujASF1fZQoaAZHQFvyoJiRW91oB03oA2gIR0CTTR6pHZsbdX2UKGgGR0BjiQeaKDTSaAdN6ANoCEdAk1IXTy8SPHV9lChoBkdARYARChN/OWgHS95oCEdAk1NEwSJ0n3V9lChoBkdAYL1QMx46fmgHTegDaAhHQJNXlc4YJmd1fZQoaAZHQGR17T2FnI1oB03oA2gIR0CTXtnSv1UVdX2UKGgGR0Bi1Mju8brDaAdN6ANoCEdAk1+l9a2Wp3V9lChoBkdAYOf4Uvf0mWgHTegDaAhHQJNjRXcQAdZ1fZQoaAZHQD3FItlI3BJoB0v6aAhHQJNktigCfYl1fZQoaAZHQELFFCLMs6JoB0vKaAhHQJNq7GEPDpF1fZQoaAZHQGK8tOmBOHpoB03oA2gIR0CTfgidrftQdX2UKGgGR0BkZ+vOhTOxaAdN6ANoCEdAk4Osan7523V9lChoBkdAYhSDoQnQY2gHTegDaAhHQJOM98c+7lJ1fZQoaAZHQF69uAqd6LRoB03oA2gIR0CTjkMC9ytFdX2UKGgGR0BmK8rwvxpdaAdN6ANoCEdAk5JJpi7TUnV9lChoBkdAXg/15B1LamgHTegDaAhHQJOYSEvkBCF1fZQoaAZHQGR7aQvHtF9oB03oA2gIR0CTmWCKJl8PdX2UKGgGR0Bng1ObiIcjaAdN6ANoCEdAk5u90A93bHV9lChoBkdAY1Kqur6tT2gHTegDaAhHQJOg/jFQ2uR1fZQoaAZHQGM6lK02LpBoB03oA2gIR0CToWmcvugIdX2UKGgGR0BkZZsl9jPOaAdN6ANoCEdAk6VohEBsAXV9lChoBkdAYUyoKD0162gHTegDaAhHQJOpm/oJRfp1fZQoaAZHQFytUAksz2xoB03oA2gIR0CTsSzkp7TldX2UKGgGR0BkwxsKsuFpaAdN6ANoCEdAk7XEQsf7rXV9lChoBkdAaEXA6+36RGgHTegDaAhHQJO3+gK4QSV1fZQoaAZHQGWAKjrRjSZoB03oA2gIR0CTwsSjgydndX2UKGgGR0Biph/3FkxzaAdN6ANoCEdAk8T7yc0+DHV9lChoBkdAYaIEal1r7GgHTegDaAhHQJPcshGH58B1fZQoaAZHQGJJ4FaB7NVoB03oA2gIR0CT5HcbzbvgdX2UKGgGR0BmoccfeUILaAdN6ANoCEdAk+WSon8baXV9lChoBkdAYwZL6k6902gHTegDaAhHQJPqMF8ohIR1fZQoaAZHQGLy4FaB7NVoB03oA2gIR0CT89npB5X2dX2UKGgGR0Bk96rPt2LYaAdN6ANoCEdAk/WBiPQv6HV9lChoBkdAXU2qrBCUo2gHTegDaAhHQJP4qrFOwgV1fZQoaAZHQFk2v73wkPdoB03oA2gIR0CT/j4uscQzdX2UKGgGR0Bh6i2hIvrXaAdN6ANoCEdAk/6xPTG5tnV9lChoBkdAYkbKT0QK8mgHTegDaAhHQJQCoIiTt9h1fZQoaAZHQGXo4Qz1schoB03oA2gIR0CUBlpzcRDkdX2UKGgGR0BlP4DeTFERaAdN6ANoCEdAlAy0sJ6Y3XV9lChoBkdAYoWAU+LWJGgHTegDaAhHQJQQXU2DQJJ1fZQoaAZHQGFdxEORT0hoB03oA2gIR0CUEc66reZYdX2UKGgGR0BlvU6tDD0laAdN6ANoCEdAlBevmgam43V9lChoBkdAZLU5myxA0WgHTegDaAhHQJQZBdv863l1fZQoaAZHQFwdE384xUNoB03oA2gIR0CUMh54nndPdX2UKGgGR0BnglVWCEpRaAdN6ANoCEdAlDh1kH2RJXV9lChoBkdAYiP8v24/eWgHTegDaAhHQJQ5Y2Ifr8l1fZQoaAZHQGOlt3np0OpoB03oA2gIR0CUPYbmlqJudX2UKGgGR0BlAXwRXfZVaAdN6ANoCEdAlEQ1PBSDRXV9lChoBkdAZJLD4xk/bGgHTegDaAhHQJRFUn0Cih51fZQoaAZHQGZ3lum78NxoB03oA2gIR0CUR6EZiuuBdX2UKGgGR0BhX74593KTaAdN6ANoCEdAlEzNHDrJKnV9lChoBkdAZMVE0iyIHmgHTegDaAhHQJRNMoRZlnR1fZQoaAZHQGL4qvmozepoB03oA2gIR0CUUP+3pfQbdX2UKGgGR0BlFqjgydnTaAdN6ANoCEdAlFUOii7Ci3V9lChoBkdAYIioDPnjhmgHTegDaAhHQJRd8BbOeJ51fZQoaAZHQFBaL0Bfa6BoB0v9aAhHQJRec/GEPDp1fZQoaAZHQGMyQMpgCwNoB03oA2gIR0CUYa446wMZdX2UKGgGR0BcUT8LronsaAdN6ANoCEdAlGL6DK5kLHV9lChoBkdAZ6OSbH6uXGgHTegDaAhHQJRodliBoVV1fZQoaAZHQF+Fi2lVLjBoB03oA2gIR0CUab8AaNuMdX2UKGgGR0BeNRVIZqEfaAdN6ANoCEdAlH/NQTEiuHV9lChoBkdAZqXupjtojGgHTegDaAhHQJSGMOBlMAZ1fZQoaAZHQGIDYL1EmY1oB03oA2gIR0CUhzNkOI69dX2UKGgGR0BhWPnIQvpRaAdN6ANoCEdAlIzz3Zf2K3V9lChoBkdAYu2ymhufmWgHTegDaAhHQJSVPcUM5Ot1fZQoaAZHQGSCPW6K+BZoB03oA2gIR0CUlmKsuFpPdX2UKGgGR0BlWT7l7tzCaAdN6ANoCEdAlJjNFa0Qb3V9lChoBkdAZfqAFxGUfWgHTegDaAhHQJSeHpqynk11fZQoaAZHQGOutke6qbVoB03oA2gIR0CUouwFC9h7dX2UKGgGR0BjASXa8Hv+aAdN6ANoCEdAlKcTN+so2HV9lChoBkdAaAzCkXUH6mgHTegDaAhHQJSuSm0mdAh1fZQoaAZHQGPH3arWAgBoB03oA2gIR0CUrrL0SRKZdX2UKGgGR0BiOLvG6wt8aAdN6ANoCEdAlLILN8ma6XV9lChoBkdAb8e+HrQgLmgHTZoBaAhHQJSyZA6dUbV1fZQoaAZHQGTTvvSc9W9oB03oA2gIR0CUs2k8RtgsdX2UKGgGR0Bl0aXnhbW3aAdN6ANoCEdAlLk6fBeok3V9lChoBkdAYpCS0Sh8IGgHTegDaAhHQJS6n212JSB1fZQoaAZHwCsBuqFRHgBoB0u3aAhHQJS+qUu+RHR1fZQoaAZHQGOlIC+10DFoB03oA2gIR0CUwP1ie/YbdX2UKGgGR0BRk4uGsV+JaAdNKQFoCEdAlMFdR77bc3V9lChoBkdAZNvoEjgQ6WgHTegDaAhHQJTbNsP8Q7N1fZQoaAZHQGRvdc8kleFoB03oA2gIR0CU3D3UhFEzdX2UKGgGR0BiYQoVmBe5aAdN6ANoCEdAlOAuMIeHSHV9lChoBkdAKJKneizsyGgHS/5oCEdAlOIQ6ltTDXV9lChoBkdAYP4Dp1RtQGgHTegDaAhHQJTmZFLFn7J1fZQoaAZHQGMi/RVp9JBoB03oA2gIR0CU53ML4N7TdX2UKGgGR0BjSYKF7D2raAdN6ANoCEdAlO6WdAgPmXV9lChoBkdAZ65qB3A2ymgHTegDaAhHQJTz7PBzmwJ1fZQoaAZHQF5ef1Hvtt1oB03oA2gIR0CU+QfjS5RTdX2UKGgGR0BiH+PvKEFoaAdN6ANoCEdAlQBhVMmF8HV9lChoBkdAYbzTdcjZ+WgHTegDaAhHQJUECfywwCd1fZQoaAZHQGAco2n889xoB03oA2gIR0CVBGQUpNKzdX2UKGgGR0BkmoOavzOHaAdN6ANoCEdAlQvNvjwQUnV9lChoBkdAYKgIFeOXFGgHTegDaAhHQJUNUm9g4Ot1fZQoaAZHQGaPrhrFfiRoB03oA2gIR0CVEsE3bVSXdX2UKGgGR0Bm05GWldkbaAdN6ANoCEdAlRMYhUzbe3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}