--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-base-finetuned-emo_une results: [] --- # deberta-v3-base-finetuned-emo_une This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4500 - Accuracy: 0.865 - F1: 0.8681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.68 | 1.0 | 26 | 0.6269 | 0.585 | 0.6107 | | 0.5312 | 2.0 | 52 | 0.4552 | 0.86 | 0.8578 | | 0.3854 | 3.0 | 78 | 0.4478 | 0.84 | 0.8441 | | 0.3005 | 4.0 | 104 | 0.4395 | 0.86 | 0.8644 | | 0.258 | 5.0 | 130 | 0.4500 | 0.865 | 0.8681 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1