File size: 1,723 Bytes
aeccc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebd372
 
 
aeccc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebd372
 
 
 
 
aeccc16
 
 
 
6ebd372
aeccc16
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-base-finetuned-t_feedback
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-finetuned-t_feedback

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0730
- Accuracy: 0.985
- F1: 0.9882

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6709        | 1.0   | 26   | 0.5690          | 0.99     | 0.9850 |
| 0.4963        | 2.0   | 52   | 0.4966          | 0.825    | 0.8951 |
| 0.2759        | 3.0   | 78   | 0.2600          | 0.985    | 0.9865 |
| 0.4094        | 4.0   | 104  | 0.1055          | 0.99     | 0.9916 |
| 0.211         | 5.0   | 130  | 0.0730          | 0.985    | 0.9882 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.19.1